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In-situ monitoring is crucial for detecting process anomalies and ensuring part quality in additive man-
ufacturing. Acoustic-based monitoring techniques offer extra benefits such as adjustable sensor setup
and lower hardware costs. In the direct energy deposition (DED) process, acoustic signals generated by
laser-material interactions carry information about underlying complex physical mechanisms such as
melting, solidification, crack propagation, and pore formation. This paper presents a novel acoustic-
based in-situ monitoring method for the DED process. The raw acoustic signal is made up of laser-
material interaction sound as well as noise from machine movement, inert gas flow, and powder flow.
A deep learning model is developed to build an end-to-end signal denoising framework to minimize envi-
ronmental noise and extract the laser-material interaction sound. Audio equalization, bandpass filtering,
and Harmonic-Percussive Source Separation algorithm are used to produce a cleaned laser-material
interaction sound as the model’s ground truth target. Acoustic data is collected from experiments using
different DED machines, materials, and varied process parameters to train the deep learning model. The
proposed deep learning-assisted signal denoising strategy lays the groundwork for acoustic-based in-situ
defect detection of the DED process.
Copyright � 2022 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of The International Confer-
ence on Additive Manufacturing for a Better World.
1. Introduction

Direct energy deposition (DED) has gained prominence in the
aerospace, maritime, and defence industries in recent years due
to its distinct benefits in fabrication flexibility and material perfor-
mance enhancement [1–3]. Despite all the advancements, DED still
faces significant challenges in terms of quality consistency and
process repeatability. Many defects such as cracking, porosities,
and distortions are only attainable through destructive testing,
which cannot be employed for in-process monitoring and control
systems. The development of in-situ monitoring and adaptive
quality enhancement methods is the key to improve the final part
quality and efficiency of the DED process [4].

Many recent research efforts have been devoted to developing
vision-based in-situ monitoring systems for laser additive manu-
facturing (AM). For example, Kwon et al. [5] presented a deep neu-
ral network to classify melt pool images acquired from a high-
speed camera to predict different laser power levels during the
selective laser melting (SLM) process. Since laser power influences
the formation of pores or fractures, which in turn affects the com-
ponent quality, precise laser power prediction is beneficial for
identifying process anomalies. In addition, vision information can
be used directly to detect voids [6] and predict porosities [7].
Real-time vision data can also be used to create a closed-loop con-
trol system that allows to stabilise the melt pool and improve geo-
metric accuracy [8,9]. Recently, the authors’ research team has
developed an in-situ surface defect identification approach based
on laser-line scanning and an in-process adaptive dimension cor-
rection strategy [10–12] for the DED process.

Vision-based monitoring solutions are typically time-
consuming and costly to deploy. Acoustic-based monitoring
approaches provide additional benefits such as adjustable sensor
configuration and lower hardware costs. In the laser-based AM
process, acoustic signals generated by laser-material interactions
carry information about underlying complex physical mechanisms
such as melting, solidification, crack propagation, and pore forma-
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tion. Recently, acoustic-based monitoring methods in the laser
powder bed fusion (LPBF) process were reported in the literature,
achieving promising results in classifying different materials and
process regimes [13], identifying process anomalies with semi-
supervised learning [14], and extracting re-usable features to mon-
itor different materials via transfer learning [15]. Since there is no
gas flow in the enclosed chamber and little machine movement in
the LPBF, external noise has a negligible impact on the acoustic sig-
nal, making this only a minor problem for monitoring the LPBF pro-
cess. The acoustic signal in the DED process, on the other hand, is
typically noisier, making analysing the laser-material interaction
sound difficult. In the DED process, acoustic-based monitoring is
rarely investigated.

To this end, this paper presents a novel acoustic-based in-situ
monitoring method for the DED process. The raw acoustic signal
contains laser-material interaction sound, as well as noises from
machine movement, inert gas flow, and powder flow. A deep learn-
ing model is developed to build an end-to-end signal denoising
framework to minimize environmental noise and extract the
laser-material interaction sound. Audio equalization, bandpass fil-
tering, and Harmonic-Percussive Source Separation (HPSS) algo-
rithm are used to produce a cleaned laser-material interaction
sound as the model’s ground truth. Acoustic data was collected
from experiments using different DED machines, materials, and
varied process parameters to train the deep learning model. The
proposed deep learning-assisted signal denoising strategy lays
the groundwork for acoustic-based in-situ defect detection of the
DED process.

2. Experimental setup

Acoustic data was collected from experiments using different
DED machines, materials, and varied process parameters, as listed
in Table 1. Three different types of DED equipment were used, two
of which were robot-based, and one was CNC-based. Fig. 1 depicts
the acoustic-based in-situ monitoring configurations for two dis-
tinct DED setup. The system depicted in Fig. 1(a) comprises a 6-
axis industrial robot (KUKA KR90). On the robot arm’s end-
effector is a laser head with a coaxial powder feeding nozzle. The
other robot-based DED system that uses an ABB IRB 4400 robot
has a similar arrangement to the one shown in Fig. 1(a), hence it
is not shown here. In Fig. 1(b), the laser head and powder feeding
nozzle are installed within an enclosed CNC machine chamber. The
acoustic signals for different DED processes were captured by a
microphone (Xiris WeldMic) with a frequency response range of
50–20,000 Hz. The microphone sensor was positioned near the
nozzle in both setups, and the sampling rate was set to 44,100 Hz.

3. Acoustic signal denoising

A deep learning-based end-to-end acoustic signal denoising
framework is proposed to extract the laser-material interaction
sound. The objective of the framework is to remove the environ-
mental noise from the raw acoustic signal while minimizing unde-
sired artefacts in the output signal. The details are explained as
follows.
Table 1
DED experiments for acoustic data collections.

Experiment number DED machine Powder Material

1 ABB robot-based Inconel 625
2 ABB robot-based Inconel 625
3 ABB robot-based Bronze (CuNiAl)
4 KUKA robot-based Maraging Steel
5 CNC-based Maraging Steel
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3.1. Deep learning-based end-to-end acoustic signal denoising
framework

The overall architecture of the proposed acoustic signal denois-
ing framework is depicted in Fig. 2. For the same denoising objec-
tive, two types of deep learning models are applied: a fully-
connected regression deep neural network (F-DNN) [16,17] and a
redundant convolutional encoder-decoder network (R-CED) [18].
Both networks were widely used for speech denoising and
enhancement in the AI audio domain [19]. The raw acoustic signal
obtained from the DED process, on the other hand, comprises a
more complex noise source than the speech signal. This noise var-
ies depending on the specific DED machine, material, and process
settings. Therefore, as detailed in section 2, acoustic data were col-
lected from experiments employing different DED machines, mate-
rials, and process parameters to provide a diverse dataset for
training the deep learning model.

A three-step sound source extraction method was proposed to
create a cleaned laser-material interaction sound as the ground
truth label for the deep learning models, as illustrated in Fig. 2:
(1) audio equalization, (2) bandpass filtering, and (3) Harmonic-
Percussive Sources Separation (HPSS). The details of sound source
extraction will be described in the subsequent Section 3.2.

After separating the laser-material interaction sound, the mag-
nitude spectrum, which represents the energy concentration
throughout time and frequency domains, is calculated using the
short-time Fourier Transform (STFT) [20] on both the original
and cleaned signals. The magnitude spectrums components are
selected from the original and cleaned signals and are used as
the inputs and targets of the deep learning models, respectively.
Both networks seek to minimize the difference between the pre-
dicted and target magnitude spectrum. To transform the informa-
tion back to time domain, the final denoised acoustic signal is
obtained using inverse-STFT on the predicted magnitude spectrum.

3.2. Three-step sound source separation method

The Fast Fourier Transform (FFT) results for various sound
source during the DED process are plotted in Fig. 3. Each sound
source was recorded independently, with no other components
of the process activated. The gas flow sound, for example, was
recorded with only the gas switched on and the other process com-
ponents turned off. Machine motion sound clearly contributes sig-
nificantly to the low-frequency bands (0–1000 Hz), whilst other
sources have a relatively modest impact on the overall acoustic
output. However, all of the sound sources carry energy throughout
the frequency domain, making the sound source separation diffi-
cult. To separate the laser-material interaction sound from the
noisy environment, a three-step sound source separation method
is presented as follows.

Firstly, raw acoustic signals were processed via audio equaliza-
tion [21], which adjusts the magnitude of different frequency
bands as illustrated in the block diagram in Fig. 4. The transfer
function Heq zð Þ of the parallel audio equalizer can be expressed as:
Laser Power (kW) Speed (mm/min) Powder flow rate (g/min)

1.29 450 13.50
2.4 1200 16.50
0.8 900 3.13
1.9 1200 10.50
0.9 900 2.09



Fig. 1. Acoustic-based in-situ monitoring setup: (a) robot-based DED system, (b) CNC-based DED system.

Fig. 2. Deep learning-based end-to-end denoising framework for DED acoustic-based monitoring.
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Heq zð Þ ¼
XM

m

GmHm ð1Þ

where Hm represents the transfer function of each individual fre-
quency band, and Gm represents the gains that control each band-
width’s magnitude. The gain is manually adjusted to decrease
noise and enhance the sound of laser-material interaction. The mag-
nitude was greatly reduced below 1000 Hz, where machine noise
dominates. Gain values are determined through trial and error
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and must be fine-tuned for each unique experiment to meet a wide
variety of machine and process conditions. The frequency response
of the audio equalizer for Experiment 1 in Table 1 is illustrated in
Fig. 5(a), where the magnitudes of frequency bands ranging from
1000 Hz to 20,000 Hz were increased, and the magnitudes of the
remaining frequency bands were suppressed.

Secondly, a bandpass filter is used to reject high and low-
frequency noise. As shown in Fig. 5(b), the filter passes frequencies
between 3000 Hz and 2100 Hz while attenuating frequencies out-



Fig. 3. Fast Fourier Transform (FFT) plots for different sound sources during DED process: (a) frequency in log scale, (b) magnitude in log scale.

Fig. 4. Block diagram of audio equalizer in a parallel configuration.
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side of this range. The rationale for this step is that, while the pre-
vious step’s equalization significantly enhances the laser-material
interaction sound, the noise components remain evident. More
details on the effect of bandpass filtering will be shown in
Section 4.
Fig. 5. Response of the audio eq
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Thirdly, the final extraction is performed using the Harmonic-
Percussive Sources Separation (HPSS) algorithm [22,23]. Since the
noise produced by machine motion and gas flow has a frequency
overlap with the laser-material interaction sound, the aforemen-
tioned techniques cannot completely eliminate the noise. The HPSS
sound source separation method is especially effective for separat-
ing the harmonic and percussive components of monaural audio
input. During our trial-and-error studies, we discovered that the
laser-material interaction sound was the percussive component
in the DED acoustic signal.

All the aforementioned steps are implemented using Python
nussl [24] and librosa [25] library, and the deep learning models
are implemented in MATLAB deep learning toolbox. The effect of
each step will be illustrated in section 4.
ualizer and bandpass filter.



Fig. 6. Time-domain visualization of (a) original noisy acoustic signal and (b) final denoised signal.

Fig. 7. Fast Fourier Transform (FFT) plots for each step of laser-material sound extraction: (a) frequency in log scale, (b) magnitude in log scale.
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4. Result and discussion

Fig. 6 shows a 2-second time-domain slice of the original DED
acoustic signal and the final cleaned laser-material interaction
sound. The magnitude around zero in the cleaned sound indicates
the ‘‘laser-off” period during the DED process. The FFT plots of each
step of the proposed sound extraction method are visualized in
Fig. 7. The audio equalizer suppressed the low-frequency noise
while enhancing the volume from 1000 Hz to 20,000 Hz. Subse-
quently, the bandpass filter eliminates the sound outside the range
of 3000 Hz and 2100 Hz. As a result, most of the machine sound
and gas flow sound showed in Fig. 3 are removed or significantly
reduced. In the final phase, the HPSS sound source separation iso-
lates the percussive components of the acoustic signal that corre-
late to the laser-material interaction sound.
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The three-step sound source separation method produces the
target labels for the deep learning-based acoustic signal denoising
framework. A total of 140 samples of acoustic signal components
collected from different DED experiments were used to train the
deep learning models. Each sample was truncated to 2 s, and 20%
of the total data was used for validation. The models minimize
the difference between the predicted and target magnitude spec-
tra. The models were trained with NVIDIA GeForce RTX 3060
GPU. Both the R-CED network and the F-DNN show promise in
mapping original noisy signals to extracted target signals. After
20 training epochs (with 557 iterations per epoch), the validation
root means square error (RMSE) for R-CED and F-DNN networks
is 1.1339 and 0.81539, respectively. The performance of the model
still has significant room for improvement, which will be
addressed in future research. Fig. 8 shows a screenshot of the R-



Fig. 8. A screenshot of the training progress for the R-CED network.
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CED network’s training progress, displaying the training process’s
convergence trend.
5. Conclusion

This paper presented a novel acoustic-based in-situ monitoring
method for the DED process. A deep learning-based end-to-end
acoustic signal denoising framework was developed to extract
the laser-material interaction sound during the DED process. To
produce the targets needed to train the deep learning model, a
three-step sound source separation approach was developed: (1)
audio equalizer was used to suppress the low-frequency band
noise while increasing the volume of the laser-material interaction
sound; (2) bandpass filtering was performed to eliminate the noise
in high and low-frequency bands; (3) the HPSS separation algo-
rithm then extracted the acoustic signal’s percussive components,
which correspond to the laser-material interaction sound. As a
result, external noises such as machine movement, gas flow, and
powder flow can be removed or significantly reduced. Two deep
learning models were trained for the regression task: the F-DNN
and R-CED networks. Both models showed feasibility in acoustic
signal denoising, with the F-DNN network outperforming the R-
CED with a lower RMSE. Future work includes improving the
denoising network model performance and using the denoised
acoustic signal to identify process anomalies and defects.
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