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Rapid surface defect identification for additive manufacturing with in-situ point
cloud processing and machine learning
Lequn Chena,b, Xiling Yao a, Peng Xua, Seung Ki Moonb and Guijun Bia

aSingapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, Singapore; bSchool of Mechanical and
Aerospace Engineering, Nanyang Technological University, Singapore

ABSTRACT
Surface monitoring is an essential part of quality assurance for additive manufacturing (AM).
Surface defects need to be identified early in the AM process to avoid further deterioration of
the part quality. In this paper, a rapid surface defect identification method for directed energy
deposition (DED) is proposed. The main contribution of this work is the development of an in-
situ point cloud processing with machine learning methods that enable automatic surface
monitoring without sensor intermittence. An in-house software platform with a multi-nodal
architecture is developed. In-situ point cloud processing steps, including filtering, segmentation,
surface-to-point distance calculation, point clustering, and machine learning feature extraction,
are performed by multiple subprocesses running simultaneously. The combined unsupervised
and supervised machine learning techniques are applied to detect and classify surface defects.
The proposed method is experimentally validated, and a surface defect identification accuracy
of 93.15% is achieved.
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1. Introduction

Additive manufacturing (AM), also known as 3D printing,
is a trending technology with great potential in high-mix
low-volume manufacturing (Ng, Chua, and Shen 2019;
Tan et al. 2019; Choong, Maleksaeedi, et al. 2020; Jiang
and Ma 2020; Tan et al. 2020). The versatility of the AM
technology makes it an ideal tool to address complex
design needs for customised products, especially in
crises when conventional processes and supply chains
cannot respond quickly enough to meet the rapid-chan-
ging demand (Bishop and Leigh 2020; Celik et al. 2020;
Choong, Tan, et al. 2020; He et al. 2020). However,
unlike the more mature processes such as machining,
casting, and forging, AM still lacks robustness and
repeatability despite its many advantages. This is par-
ticularly true for large-format metal AM processes, such
as the directed energy deposition (DED) and powder
bed fusion (PBF) that use laser or electron beam to
melt metal powders during material deposition (Tan
et al. 2015; Jiang et al. 2019; Yu, Sing, Chua, Kuo, et al.
2019; Yu, Sing, Chua, and Tian 2019; Kuo et al. 2020).
The rapid heating and cooling cycles generate signifi-
cant thermal stress in the part that may eventually
lead to distortions. Other uncertainties and instabilities
in metal AM processes, such as the strong melt-pool
dynamics, localised heat accumulation, and speed

inconsistency in machine motions, also create defects
in AM parts (Collins et al. 2016; Grasso and Colosimo
2017). Surface defects, including local bulges and
dents, are important reflections of AM process abnorm-
alities. Therefore, early detection of surface defects is
crucial for AM processes to avoid excessive errors
leading to unrepairable build failures. The development
of effective surface monitoring methods is an important
step towards a higher level of industry readiness for AM
technologies (Chua, Ahn, and Moon 2017).

In the literature of in-situ surface quality assessment for
AM, various non-destructive testing (NDT) methods have
been studied (Lu and Wong 2018). One of the most
common NDT methods is the vision-based surface topo-
graphy measurement that captures images using digital
cameras and assesses the surface quality by image proces-
sing. The popularity of the vision-basedmethod is attribu-
ted to the simple setup and inexpensive hardware.
Computer vision algorithms for feature extraction have
been proven capable of detecting distortions and
defects on additively manufactured parts (Okarma and
Fastowicz 2020). Stereovision-based methods have also
been developed for AM, where two cameras are posi-
tioned at different locations with overlapping views of
the monitored surface (Li et al. 2018). The dual-camera
setup enables the 3D topography reconstruction from
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the pixels using the digital image correlation (DIC) tech-
nique (Holzmond and Li 2017). Another vision-based
NDT method is profile scanning by line lasers. Instead of
capturing the pixel images of the surface area, the laser
profiler captures only the reflected laser line from the
surface through a narrow-bandpass optical filter. The dis-
tance from the targeted surface to the sensor is then calcu-
lated by the triangulationmethod (García-Díaz et al. 2018).
Compared to traditional vision-based methods, laser
profile scanning has a higher resolution and can generate
accurate height data without the computationally heavy
3D reconstruction step (Tang, Wang, and Zhang 2019).

Different statistical methods have been applied in
sensor data processing for surface quality assessment.
While the underlying physics of defect formation in
AM is complicated, statistical methods can be powerful
and yet simple tools for predicting defect occurrence
and modelling the characteristics of defects. For
example, an adaptive Bayesian methodology has been
developed to quantitatively define the geometric
shape deviations of additively manufactured parts using
only a limited number of sample data (Sabbaghi,
Huang, and Dasgupta 2018). Various machine learning
models (e.g. random forest, decision tree, and artificial
neural network) have been tested for quality control in
extrusion-based AM processes such as fused deposition
modelling (FDM) (Sohnius et al. 2019; Jiang et al. 2020)
and 3D concrete printing (Lao et al. 2020). In the above
studies, predictive models have been built to correlate
the surface defects with extrusion process parameters
such as feed rate, layer height, and infill density, etc.
Another research on the FDM applied the random
forest regression to predict the printed part’s surface
roughness based on real-time process conditions (includ-
ing machine temperatures and vibrations) measured by
thermocouples, infra-red cameras, and accelerometers
(Wu, Wei, and Terpenny 2018). Machine learning tech-
niques have also been applied in quality control for 3D
bioprinting of tissues and organs, where shape deviations
were related to the bioprinting process parameters (Yu
and Jiang 2020) and the machine learning models were
used for process refinement (Ng et al. 2020).

The aforementioned studies on surface quality assess-
ment for AM have common limitations. Raw data output
from sensors requires post-processing before they can
be further analysed for defect identification. Common
post-processing methods include 3D reconstruction,
data filtering, and depth image generation, etc. Geo-
metric feature extractions (e.g. line and contour extrac-
tions) also need to be carried out using the post-
processed sensor data, and the results are then fed
into statistical models for defect identification. These
data post-processing and feature extraction steps may

consume a considerable amount of computing time,
and stacking them together may cause significant
latency. Therefore, as reported in most literature,
surface defect identification is performed only after the
sensor has completed the current capturing cycle. And
the sensor can start the next capturing cycle only
when surface defect identification is completed. This
intermittent procedure makes the surface monitoring
inefficient, especially when the additively manufactured
part is large, which is common in the DED processes.

Therefore, to address the above issue, this work aims
to enable on-the-fly surface defect identification during
continuous sensor capturing without intermittence. In
this research, a rapid surface defect identification
method for the robot-based DED system is proposed, fea-
turing a novel in-situ point cloud processingmethod inte-
grated with machine learning models. A laser profiler is
used for surface monitoring. A software platform is devel-
oped in-house to establish data transmission among the
sensor, robot, and central controller. The multi-nodal
architecture of the software platform enables parallel
and synchronised computing processes that can
perform multiple tasks simultaneously, which makes the
point cloud processing and machine learning algorithms
to run in-situ during surface scanning. The rapidness of
the proposed defect identification method is attributed
to the following two novel characters. (1) 3D spatial
data in the form of point clouds are processed automati-
cally during, instead of after, sensor capturing. (2) Depth
images do not need to be generated, and the computa-
tionally expensive geometric feature extraction is not
required. Simple point cloud statistics are directly used
as input data to the machine learning model that ident-
ifies surface defects. Hyperparameters of various
machine learning models are optimised via cross-vali-
dated grid search, and the model with the best testing
accuracy is chosen. The proposed method is validated
experimentally and proven to be efficient and accurate.

The rest of this paper is structured as follows: Section
2 explains the details of the proposed method, including
the system setup, software architecture, in-situ point
cloud processing, and machine learning for surface
defect identification. Section 3 presents the experimen-
tal results that validate the proposed method and
finally, Section 4 concludes the paper with a summary
and future work recommendation.

2. Methodology

2.1. System setup

This research is conducted based on the Laser-Aided
Additive Manufacturing (LAAM) system developed in-

2 L. CHEN ET AL.



house at the authors’ institution. As a member of the DED
family, the LAAM process utilises a high-power laser to
melt metallic powders as they are deposited. The illus-
tration of the LAAM process is given in Figure 1. A
coaxial nozzle is used to aim the laser beam at the sub-
strate and project the powders through the channels.
The molten powders enter the melt pool and then solidify
rapidly as the nozzle travels in the feed direction. Due to
its high build rate, LAAM is particularly suitable for man-
ufacturing large-format components such as those used
in aircraft, ships, and offshore structures.

The overall hardware setup of the LAAM system is
illustrated in Figure 2. The material flow, energy flow,

and signal flow within the LAAM system are indicated
by arrows. A Highyag BIMO laser head is installed on
an ABB IRB-4400 6-axis robot, next to which an ABB
IRBP-A 2-axis positioner is located. Both the robot and
the positioner are controlled by an IRC5 controller. An
IPG YLS-6000 Ytterbium laser source supplies the
1070 nm continuous laser beam to the laser head via a
fibre. The on/off switch and power setting of the laser
are also controlled by the IRC5 controller via digital
and analogue I/O signals, respectively. A GTV powder
feeder delivers metallic powders to the nozzle attached
at the end of the laser head. To perform surface monitor-
ing for additively manufactured parts, a laser profiler is

Figure 1. (a) The illustration of the LAAM process. (b) The nozzle used in the LAAM process.

Figure 2. The hardware setup of the LAAM system and the flows of energy, signals, and materials.
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chosen due to its compactness, high accuracy, and high
capturing rate. A Micro-Epsilon ScanCONTROL 2950-50/
BL laser profiler is integrated into the LAAM system.
The sensor is rigidly mounted on the 6th axis of the
robot, next to the laser head. This configuration allows
the sensor to move along the AM tool path, thus
enabling accurate localisation of surface defects in the
workpiece’s coordinate frame. A detailed view of the
sensor-robot coupling is shown in Figure 3(a). The
sensor is connected to a computer that communicates
with the IRC5 controller, so that the operations of both
the sensor and robot can be synchronised. The distance
(in Z-direction) between the targeted surface and the
sensor is calculated by the ‘laser line triangulation’ prin-
ciple (García-Díaz et al. 2018) as illustrated in Figure 3(b).
The output of the sensor is a series of (x, z) data repre-
senting the 2D surface profile in the sensor’s local coor-
dinate frame.

After the sensor is installed, calibration is required to
obtain the spatial relationship between the robot tool-
centre-point (TCP) and the sensor’s local coordinate
frame. The standard hand-eye calibration method (Tsai
and Lenz 1989) was applied. The detailed implemen-
tation of the hand-eye calibration can be found in (Rodrí-
guez-Araújo and Rodríguez-Andina 2015). Once the
transformation from the TCP to the sensor frame (TT

S )
is obtained, the sensor’s pose relative to the workpiece
(TW

S ) can then be calculated using the following relation-
ship:

TW
S = TW

T T
T
S (1)

where TW
T is the TCP’s pose relative to the workpiece that

can be read from the robot controller. The coordinate
frames involved in Equation (1) are illustrated in
Figure 4. Using the above relationship, 2D profile data
captured by the sensor can be transformed into 3D

point clouds, which will be explained in detail in
Section 2.2.

2.2. Multi-nodal software architecture

A software platform dedicated to surface monitoring for
LAAM is developed in this research. The proposed multi-
nodal architecture of the software platform is introduced
in this section.

A computer running a Linux OS (Ubuntu 18.04LS)
serves as the central controller for the surface monitoring
system, in which the in-house developed software is
installed. The ROS library (Quigley et al. 2009) is employed
to establish the connection among the sensor, robot, and
central controller. An earlier implementation of ROS in AM
systems can be found in (García-Díaz et al. 2018). The pro-
posed multi-nodal software architecture is illustrated in
Figure 5. The software is started by executing a ‘launch’
file that automatically starts all the ‘node’ in the software.
Each node is an independent programme that performs a
specific task (e.g. reading data and controlling the hard-
ware) or computation (e.g. coordinate transformation
and point cloud processing) for surface monitoring in
LAAM. These nodes communicate with each other by
publishing and subscribing to data on the ‘topics’ chan-
nels. A total of five nodes are launched simultaneously,
and the details of each node are described as follows.

The robot driver node works as a TCP/IP client that
talks to the server running inside the robot controller.
Two TCP/IP sockets, i.e. the ‘robot state’ socket and
‘robot command’ socket, are created. During surface
monitoring, the robot driver node continuously receives

Figure 3. (a) The laser profiler mounted on the robot. (b) The
working principle of the laser profiler.

Figure 4. Coordinate transformations among the TCP, sensor,
and workpiece frames.
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the robot joint data from the robot controller through
the ‘robot state’ socket. The joint data contain the TCP
pose (TW

T ) relative to the workpiece frame, as introduced
in Section 2.1, and they are published to the ‘joint data’
topic. The robot driver node also sends controlling
signals through the ‘robot command’ socket, such as
those controlling the robot motion and laser emission.

The sensor capturing node operates the laser profiler,
switches it on or off, sets its parameters, and receives the
output data. The original sensor output as the result of
laser line triangulation are (x, z) 2D coordinates. To
obtain 3D point clouds in the sensor frame, a zero-
valued y0 coordinate is added to create a list of

P = (x, y0, z) points. These point are then published to
the topic called ‘point cloud in the sensor frame’.

The point cloud transformation node subscribes to
both ‘joint data’ and ‘point cloud in the sensor frame’
topics that are published by the two nodes described
above. The task of this node is to transform the point
cloud from the sensor frame to the workpiece frame,
using the following relationship:

TW
p = TW

S T
S
P (2)

where TS
P is the 4 × 1 vector defined as TS

P = [P, 0]T

= [x, y0, z, 0]
T , and TW

S is the 4 × 4 homogeneous

Figure 5. The proposed multi-nodal software architecture for surface monitoring in the LAAM.
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transformation matrix calculated by Equation (1). After

this step, the transform point clouds TW
p , now with

non-zero y coordinates and hence representing the 3D
topography of the targeted surface, are continuously
published to the ‘transformed point cloud’ topic.

The point cloud processing node subscribes to the
‘transformed point cloud’ topic. It performs in-situ point
cloud manipulation and analysis while the sensor captur-
ing process is ongoing, which leads to rapid surface
defect identification without sensor or robot intermit-
tence. This node spawns several ‘subprocesses’ (indicated
by dotted arrows in Figure 5) to run parallel programmes
for data archiving, point cloud processing, and machine
learning. The surface defect identification result is pub-
lished to the corresponding topic that is subscribed by
the robot driver node. The robot driver node will then
issue controlling commands (e.g. pausing the robot
motion and switching off the laser emission) based on
the surface identification result. Further details of the
point cloud processing node and its associated subpro-
cesses will be discussed in Sections 2.3 and 2.4.

The visualisation node is responsible for real-time
graphical rendering of the robot status and surface moni-
toring result. This node launches the RViz programme
that is the native graphical user interface (GUI) for ROS
(Kam et al. 2015). The GUI subscribes to both ‘joint data’
and ‘segmented point cloud’ topics that are published
by the robot driver node and point cloud processing
node, respectively. A snapshot of the GUI during surface
monitoring is shown in Figure 6, where the white
region is the point cloud that represents the targeted
surface. Disruptions or errors in the robot motion and
sensor capturing can be timely reflected in the GUI,
which is useful for human operators to observe the
system conditions during the LAAM process.

2.3. In-situ point cloud processing

The proposed in-situ point cloud processing method
makes it possible to perform on-the-fly surface defect
identification during continuous monitoring without
sensor intermittence. At the core of the proposed
method is a subprocessing strategy that is used to
invoke parallel programmes for in-situ point cloud pro-
cessing. The subprocessing strategy is illustrated in
Figure 7, which is a detailed expansion of the ‘point
cloud processing node’ previously shown in Figure 6.
Each subprocess and its associated data processing tech-
niques are explained as follows.

The entry of the point cloud processing node is a sub-
process handler with a timer function. The timeout value
can be preset by the user (usually between 1 and 3 s).
The timeout signal spawns Subprocess 1 that is

responsible for automatic point cloud filtering and seg-
mentation. The timer is reset automatically after each
timeout, until the entire surface monitoring programme
is shutdown. While Subprocess 1 is running, all the other
nodes, including the sensor capturing and point cloud
transformation nodes, do not pause or wait. The subpro-
cess handler also stores the data received from the
‘transformed point cloud’ topic to a temporary
memory location called ‘buffer’. By doing this, the sub-
process handler can maintain a stable pipeline of point
cloud while the branched subprocesses are running.

Subprocess 1 retrieves the point cloud from the buffer
and feeds it to the filtering and segmentation functions.
The raw data captured by the sensor may contain
noises, including profiles of surrounding objects or the
substrate, which can jeopardise the accuracy in the sub-
sequent calculations for surface defect identification.
Therefore, it is critical to remove the noises and isolate
only the targeted surface before machine learning and
surface defect identification can be performed. As indi-
cated in Figure 7 above, the statistical outlier filter and
voxel grid filter are applied consecutively, followed by a
Random Sample Consensus (RANSAC) segmentation
step. The statistical outlier filter is responsible for remov-
ing randomly located sparse points that belong to
neither the targeted surface nor the substrate. The voxel
grid filter down-samples the points in abnormally high-
density regions, resulting in a point cloud with a more
homogeneous density. The RANSAC segmentation algor-
ithm removes the substrate from the point cloud and

Figure 6. The visualisation node that shows the robot pose and
the point cloud captured from the targeted surface.
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finds the point cloud regions corresponding to the tar-
geted surface only (Chen et al. 2020). The effect of
filtering and segmentation is shown in Figure 8. The
green points in Figure 8 belong to the targeted surface
identified by the RANSAC method, the white points rep-
resent the substrates, and the red points are the noises
to be removed by filters.

After the filtering and segmentation are completed,
the segmented point cloud is exported to an ASCII file
in the PCD format adapted from the Point Cloud
Library (Rusu and Cousins 2011). The reason for saving
the data into files instead of publishing them to a

topic is to ensure that they can be accessed by any
other subprocesses or nodes even after Subprocess 1
terminates and its associated memory space is
destroyed. Subprocess 2 is spawned from Subprocess
1. It imports the PCD file just saved by Subprocess 1
and then continuously publishes the data to the ‘seg-
mented point cloud’ topic. The purpose of Subprocess
2 is to communicate with the visualisation node and
let the segmented point cloud be plotted in the GUI.

Subprocess 3 is also spawned from Subprocess 1 when
the filtering and segmentation steps are completed.
Immediately after both Subprocesses 2 and 3 are

Figure 7. Subprocesses for in-situ point cloud processing.
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launched, Subprocess 1 is terminated until it is restarted
by the timer again in the subprocess handler. At the
core of Subprocess 3 is a machine learning model that
is used to identify surface defects. Subprocess 3 imports
the PCD file and then extracts the numerical features
from the point cloud data. By performing a prediction
function using the numerical features as input arguments,
the machine learning model can tell immediately if a par-
ticular type of surface defect has occurred. The outcome is
then published to the ‘surface defect identification result’
topic that informs the robot driver node if a response
action is needed to pause the LAAM process. The
details of the machine learning model will be discussed
separately in Section 2.4.

The algorithm of in-situ point cloud processing
embedded in a multi-nodal computing framework is a
key contribution of this research. Multiple computing
steps in the point cloud processing can be conducted
automatically without human intervention. Unlike most
of the previous research that performs surface defect
identification only after the sensor has completed the
current capturing cycle, the proposed method allows
surface defects to be identified immediately during con-
tinuous surface monitoring without sensor intermit-
tence. The subprocessing strategy in the proposed
algorithm allows the data manipulation (i.e. point
cloud cleaning) and data analysis (i.e. machine learning)
to be performed concurrently and continuously. With
the aforementioned capability, rapid surface defect
identification can be achieved in LAAM.

2.4. Surface defect identification by combined
unsupervised and supervised machine learning

In this research, surface defects are identified from the
point cloud by a combination of unsupervised and
supervised machine learning techniques. As an over-
view, an unsupervised clustering algorithm is first
applied to isolate the point cloud regions that poten-
tially contain surface defects, and then the clustering
result is input to a supervised classification algorithm
that examines the existence and type of defects in
each of the point cloud regions. The details of the algor-
ithms are explained in the rest of this section.

The result of surface defect identification for addi-
tively manufactured parts can be classified into four
classes. As illustrated in Figure 9 (showing the cross
section of the part), these classes include ‘no defect’ –
labelled as 0, ‘bulge defect’ – labelled as 1, ‘dent
defect’ – labelled as 2, and ‘wavy defect’ – labelled as
3. A bulge is a protruding region caused by excessive
material deposition. A dent is an under-filled region
caused by insufficient material deposition. A wavy
surface is formed by the coexistence of both bulges
and dents, which is commonly found in DED processes.
The class label value Y [ [0, 1, 2, 3] is the output of the
multiclass classifier, while the input X is a set of numeri-
cal features extracted from the segmented point cloud.

Prior to feature extraction, an ideal reference surface
needs to be obtained. The reference surface can either
be retrieved from the part’s CAD model or, if a CAD

Figure 8. Effects of filtering and segmentation with different surface shapes. (a) The curved targeted surface. (b) The planar targeted
surface are both highlighted in green.

Figure 9. Four classes of surface defect identification result.
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model is unavailable, be calculated by fitting a surface to
the segmented point cloud. In both cases, the surface is
represented by an equation f (x, y, z) = 0. Since most
additively manufactured parts are printed in parallel
layers, the reference surfaces obtained in this research
are all planar, written as f (x, y, z) = ax+
by + cz + d = 0. The coefficients in the surface equation
are saved in a file that can be read by Subprocess 3. With
the given coefficients, Euclidean distances from the
reference surface to the point cloud can be calculated
using Equation (3), where (xi, yi, zi) is the coordinate of
the ith point. Based on the distance values, the point
cloud is splitted into three sets by two thresholds, d+

and d−, which are the positive and negative values of
½ of the nominal layer thickness. As expressed in
Equation (4), points that are above the reference
surface by at least d+ are denoted as PU, points that
are below the reference surface by at least d− are
denoted as PL, and the ‘inline’ points that are close to
the reference surface within the [d−, d+] tolerance are
denoted as PO.

di = axi + byi + czi + d��������������
a2 + b2 + c2

√ (3)

PU = { pi [ P|di . d+}
PL = { pi [ P|di , d−}
PO = { pi [ P|d− ≤ di ≤ d+}

(4)

For each of the PU, PL, and PO sets, unsupervised
machine learning is applied first to find clusters of
points that can be considered as either defective or
defect-free regions. In particular, the DBSCAN clustering
algorithm (Ester et al. 1996) is adopted. In this algorithm,
points that have a high density of neighbours and
occupy a large spaces are grouped to form a cluster.
DBSCAN is chosen here due to its capability of finding
clusters with arbitrary shapes from a large number of
sample points. The pseudocode of DBSCAN for point
cloud clustering is summarised in Figure 10, where ε is
the radius of neighbourhood searching and minPt is
the minimum number of neighbours that a point must
have for it to be considered as a core point. If the core
point is never visited in the previous iteration of the
FOR loop, a new cluster is formed by this core point
and all its neighbours. Non-core points that are within
the ε distance to an existing cluster are labelled as
border points and added to that cluster. The search for
core and non-core points propagates until all clusters
in the point cloud are found. As illustrated in
Figure 11, clusters above the reference surface (i.e.
formed by points in PU) are considered as bulge
regions, and those below (i.e. formed by points in PL)
are the dent regions. Clusters with points in the

proximity of the reference surface are the defect-free
flat regions. The few dispersed points (i.e. not belonging
to any cluster) are considered as noise, regardless of
their distances to the reference plane.

Numerical features of the point cloud can now be
extracted from the clusters. A total of 12 features are
extracted, as listed in Table 1, which are the evaluating
metrics of the 3D size and shape of the point cloud clus-
ters. Before training the classifier, the correlation
between the output class and each of the numerical fea-
tures needs to be computed using a statistical method.
Only the features that are the most correlated with the
output class are chosen as the input for the classifier
training, while the less significant features can be
ignored. The pairwise correlation (rij) among the features
and the output class is computed by Spearman’s formu-
lation in Equation (5), where Dij is the difference between
the ranks of the ith and jth variables, and N is the
number of observations (Hauke and Kossowski 2011).
The value of rij ranges from −1 (i.e. the most negative
correlation) to 1 (i.e. the most positive correlation), and
0 represents ‘no correlation’.

rij = 1− 6
∑

(Dij)
2

N3 − N
[ [−1, 1] (5)

In this research, eight different classification algorithms
are trained and compared for their accuracies in
surface defect identification. These algorithms include
Support Vector Machine (SVM), K-Nearest Neighbours
(KNN), Gaussian Process (GP), Decision Tree (DT), Naive
Bayes (NB), Artificial Neural Network (ANN), and two
ensemble methods, Random Forest (RF) and AdaBoost
(AB), that can combine multiple base learners. The
open-source Scikit-learn library (Pedregosa et al. 2011)
is adopted to implement the above algorithms in the
proposed software platform. The performance of each
classifier is influenced by its hyperparameters that are
passed to the classifier as predetermined arguments.
Hyperparameters can either be discrete selections (e.g.
the kernel function type in SVM) or continuous
numeric (e.g. the kernel coefficient in SVM). In this
research, the hyperparameters of each classifier candi-
date are optimised by grid search, an exhaustive
search method that compares all possible combinations
of hyperparameter values. Although more time-consum-
ing than the alternative random search method (Berg-
stra and Bengio 2012), grid search ensures that the
global optimal hyperparameters can be found. In each
iteration of the grid search, the classifier candidate is
trained, and the performance is evaluated by a k-fold
cross-validation method to avoid overfitting. In k-fold
cross-validation, the training data is evenly split into k
sets or ‘folds’. The data in k–1 folds are used to train
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the classifier, while the remaining fold is used to validate
the classifier’s performance. In this research, the per-
formance metric is the classification accuracy defined
as the ratio of correct predictions to the total predic-
tions, as expressed in Equation (6). The above validation
is looped for each of the k folds, and the final ‘score’ of
the k-fold cross-validation is the average accuracy
value. At the end of the grid search, the hyperparameter
combination that yields the highest cross-validated
score is passed to the classifier.

Accuracy =
&num; Correctly predicted classes

&num; Total predictions
(6)

The dataset obtained from experiments is randomly
divided into the training and testing data in the ratio
of 8:2. After the classifier is trained, its accuracy is evalu-
ated using only the testing data. The definition of testing
accuracy is the same as that in k-fold cross-validation, i.e.
in Equation (6). The most accurate classifier can then be
chosen to perform surface defect identification in Sub-
process 3 of the point cloud processing node. By per-
forming the classification using the extracted
numerical features as input, Subprocess 3 can rapidly
find surface defects before the next timeout in the sub-
process handler.

Embedding the machine learning models within the
in-situ point cloud processing algorithm is another key
contribution of this research. The combination of unsu-
pervised and supervised learning in surface defect
identification allows defect regions to be isolated from

the sensor measurement and the defect type to be
recognised rapidly. The multi-nodal computing frame-
work ensures a continuous stream of sensor data
during the machine learning process, and at the same
time it enables the sharing of defect identification
result among different nodes.

3. Experimental results and discussion

Experiments were conducted to validate the proposed
rapid surface defect identification method. The effective-
ness of the in-situ point cloud processing and machine
learning in DED surface monitoring was demonstrated
successfully.

Figure 12 shows an example of a printed surface
being monitoring in the LAAM system. Figure 12(a) is
an as-fabricated metal part that has an uneven top
surface due to process instability. Before this part was
completed, its current layer was scanned by the laser
profiler and the result is given in Figure 12(b). The
initial point cloud data contained noises and part of
the substrate. The in-situ point cloud processing node
was executed in the multi-nodal software platform,
and the filtering and segmentation functions were per-
formed in Subprocess 1 concurrently as the sensor scan-
ning was ongoing. The resultant cleaned point cloud is
shown in Figure 12(c). The reference surface is superim-
posed with the point cloud in Figure 12(c), and the
surface-to-point distances are indicated by the colour
of the points. Within the in-situ point cloud processing

Figure 10. The DBSCAN algorithm applied in point cloud clustering.
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node, the cleaned point cloud was passed to the
machine learning model in Subprocess 3 for defect
identification. The DBSCAN clustering was performed
to identify point cloud regions that potentially con-
tained surface defects. An example of the DBSCAN clus-
tering result is shown in Figure 13, where three clusters
are isolated.

In order to train the classifier for surface defect
identification, 73 samples in different sizes and shapes
were fabricated by the LAAM. Some of the examples
are shown in Figure 14, and their corresponding trans-
formed point clouds are shown in Figure 15. Surface fea-
tures of the samples were extracted to construct the
training dataset, and they included all four surface
classes (i.e. ‘no defect’, ‘bulge defect’, ‘dent defect’, and
‘wavy defect’) as introduced in Section 2.4. The 73
samples, including those shown in Figure 14, were

built from stainless steel 316L powder with the diameter
of 45–90 μm. The LAAM process window for this material
was obtained in preliminary studies before this research,
and the ranges of operating parameters are listed in
Table 2. In order to randomise the type of surface fea-
tures on the samples, the operating parameters for
each sample was chosen randomly from the process
window. Therefore, as shown in Figure 14, even parts
in similar shapes (e.g. the rectangular blocks) may have
different surface features due to their different combi-
nation of operating parameters.

The correlation matrix among the numerical features
and the output class was calculated using the training
dataset. The result is plotted as a heatmap in Figure
16, where the colour represents the level of correlation.
It can be observed from the top row that the numerical
features ‘MaxDD’, ‘MeanDD’, ‘SizeB’, ‘SizeD’, and ‘ARD’
were less correlated to the output class than the other
features. Therefore, the above five features were
removed from the classifier’s input for both training
and testing.

Eight classifiers were trained, and their hyperpara-
meters were optimised by cross-validated grid search.
The results are listed in Table 3. Terminologies and nota-
tions of the hyperparameters in Table 3 are adopted
from the Scikit-learn library. Each of the trained clas-
sifiers was tested independently, and their performances
were compared in terms of accuracies. The bar chart in
Figure 17 shows the accuracies of different classifiers

Figure 11. Point cloud clusters of bulge regions, dent regions, flat regions, and noise points.

Table 1. Numerical features extracted from the point cloud.
No. Feature Names Descriptions

1 MaxBH Maximum bulge height
2 MeanBH Mean bulge height
3 StdBH Standard deviation of bulge height
4 MaxDD Maximum dent depth
5 MeanDD Mean dent depth
6 StdDD Standard deviation of dent depth
7 %B Percentage of bulge area in the point cloud
8 %D Percentage of dent area in the point cloud
9 SizeB Bounding area’s size of a bulge
10 SizeD Bounding area’s size of a dent
11 ARB Bounding area’s aspect ratio of a bulge
12 ARD Bounding area’s aspect ratio of a dent
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in the testing experiments. It was found that while KNN
was the simplest algorithm among the eight candidates,
it was also the most accurate (93.15%). The other clas-
sifiers had accuracies less than 70%. In the KNN classifier,
the feature-based distance from the ith test data (un-
labelled) to the jth training data (labelled) is calculated
by the Euclidean function (Singh, Yadav, and Rana
2013), as expressed in Equation (7) where Ln is the
feature value and N is the total number of features
being used in the classification. K training data that
have the smallest distances to the test point (i.e. the
‘nearest neighbours’) are used to decide which class
the test data should belong to. The KNN classification
uses a majority voting approach, i.e. the test data is
given the same label as the majority of its nearest

neighbours. According to the optimal KNN hyperpara-
meters shown in Table 3, the number of neighbours
(K ) is 9, meaning that each test point is voted by 9 neigh-
bouring training points. The weight function is ‘dis-
tance’, meaning that the labels of the nearest
neighbours are assigned with weights that are inversely
proportional to the distance from the test point. A KD
tree algorithm is applied to search the nearest neigh-
bours efficiently (Bentley 1975).

Dist(Xi, Xj) =
������������������
∑N
n

(LXi ,n − LXj ,n)

√√√√ (7)

Due to its high accuracy found by the experiments, KNN
was chosen as the final classifier that was added to

Figure 12. (a) An example of a printed part being monitored. (b) The initial point cloud containing noises. (c) The cleaned point cloud
after filtering and segmentation.
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Subprocess 3 of the proposed software platform to
perform surface defect identification. When any one of
the three defect classes was detected, a message was
sent by Subprocess 3 to notify both the human operator
and the robot controller. As illustrated in Figure 5, in the
multi-nodal software architecture developed in this
research, the robot driver node received the surface
defect identification result published by the point cloud
processing node (in which Subprocess 3 was running).
Via the TCP channel, the ‘robot command’ socket within
the robot driver node sent an analogue signal that
reduced the laser power to zero, followed by two digital
signals that switched off both the laser source and the
robot motion. By doing this, the LAAM process could be

paused immediately after surface defects occurred, thus
preventing further quality deterioration leading to unre-
pairable build failures. Since surface defects in the
LAAM are sometimes caused by hardware abnormalities
of the laser source, nozzle, powder feeder, and chiller
system, the automatic pausing mechanism also plays a
vital role in ensuring safety and avoiding serious system
fault. Subsequent actions can include re-programming
the LAAM tool path to repair the surface, as well as trou-
bleshooting and remediating system errors before the
printing process could be resumed. Based on the 3D
point cloud of surface defects, it is also possible to gener-
ate the repairing tool path automatically, which is part of
the authors’ future work.

Figure 13. An example of DBSCAN clustering result that shows surface defects in 3D.

Figure 14. Examples of LAAM-printed samples used in classifier training.
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The proposed surface defect identification method is
compared with the three-dimensional digital image cor-
relation (DIC), a state-of-the-art surface monitoring

technique successfully applied in AM processes such as
the FDM and PBF (Holzmond and Li 2017; Bartlett et al.
2018; Bartlett and Li 2019). Both the proposed method

Figure 15. Examples of transformed point clouds used in classifier training.

Table 2. The LAAM process window for sample fabrication using stainless steel 316L powder.
Laser power Laser spot diameter Printing speed Layer thickness Powder feeding rate (on the GTV feeder)

850–1050 W 2–3 mm 20–30 mm/s 0.2–0.3 mm 1.5–1.8 rpm

Figure 16. The heatmap that show correlations between numerical features and the output class.
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and the DIC can capture surface defects in 3D. The DIC
utilises a dual-camera setup fixed above the build plat-
form, and the images from both cameras are correlated
using the intrinsic pattern of the targeted surface, thus
converting 2D pixels into 3D coordinates. Unlike the
DIC, the proposed method uses a robotised laser
profiler that moves around the workpiece instead of
being fixed. Therefore, the surface monitoring area is
not restricted by either the field-of-view or the focusing
range of the camera. The DIC is troubled by occasional
obstruction of the camera view by the print head

(Holzmond and Li 2017), while the proposed method
with a robotised laser profiler is free from this issue,
making it suitable for the DED process. In this research,
the multi-nodal computing framework integrated with
machine learning models can rapidly detect and classify
different types of surface defects even when multiple
defect regions appear in the same layer, which was
not reported in the literature of DIC.

The DIC has been applied in residual stress measure-
ment for AM parts (Croom, Bumgardner, and Li 2016;
Bartlett et al. 2018; Bartlett and Li 2019). In principle,
the technology developed in this paper can also be
applied to measure residual stress if it is used in PBF
systems (e.g. SLM and EBM). Just like the DIC, the pro-
posed method can obtain curved surface profiles in
3D, and the mapping from the surface curvature to the
residual stress can be done in the same way as reported
by the above references. Residual stress is the main
cause of part distortion in the PBF, and a deterministic
elastic model can be used to convert the warpage to
the residual stress (Bartlett et al. 2018). However, this
paper focuses on the DED process which is different
from the PBF in terms of surface defect formation. In
the DED, surface defects are influenced by not only the
residual stress but also intrinsic process instabilities,
such as the shifting of the powder stream focus relative
to the laser spot and the inconsistent robot speed, that
can result in wavy layers and collapsed edges instead of
only warpages (Shi et al. 2020). Therefore, a deterministic
mapping between surface curvature and residual stress
is less feasible in DED, and the residual stress measure-
ment using the proposed surface monitoring method
is not performed in this research.

The technology developed in this research can also
be applied by the general 3D printing community

Table 3. The optimal hyperparameters of the trained classifiers.
Classifiers Hyperparameters Optimal values

SVM Kernel Radial basis function
(RBF)

Regularization parameter (C) 100
Kernel coefficient (γ) 0.001

KNN Number of neighbours 9
Weight function Distance
Algorithm to calculate nearest
neighbours

KDTree

GP Kernel 1.0 * RBF(1.0)
Optimizer None

DT Minimum sample split 2
The splitter strategy Random
Criteria for split quality Gini impurity
Maximum depth of the tree 4

NB Variance smoothing 1e–9
ANN Activation function ‘Identity’

Solver for weight optimization Stochastic gradient
descent (SGD)

Learning rate Constant
Number of neurons in the 1st
hidden layer

20

Number of neurons in the 2nd
hidden layer

10

RF Minimum sample split 4
Number of tree estimators:4 4
Criteria for split quality Gini impurity
Maximum depth of the tree 3

AB Number of estimators 10
Boosting algorithm SAMME

Figure 17. Accuracies of the trained classifiers.
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beyond the current focus on the DED. Other processes
may find the proposed method useful in monitoring
the printed parts’ surface conditions. Although
different training datasets need to be experimentally
generated for classifier training in different AM pro-
cesses, the framework of the proposed method and
the multi-nodal software platform can remain mostly
intact, making the technology easy to adopt by
different processes.

4. Conclusions

In this paper, a novel rapid surface defect identification
method for DED-type additive manufacturing is pro-
posed. The key contribution of this work is the develop-
ment of an in-situ point cloud processing with machine
learning methods that enables automatic and continu-
ous surface monitoring without sensor intermittence
or human intervention. A laser profiler was integrated
into a robot-based LAAM system that was used to fabri-
cate metallic parts with powders. A software platform
was developed with a multi-nodal architecture. Within
the software platform, multiple subprocesses were exe-
cuted in parallel, which enabled the in-situ point cloud
processing and analysis. A machine learning model
that combines clustering and multiclass classification
was embedded in the in-situ point cloud processing
node to identify surface defects. Experiments were con-
ducted to train the machine learning model and validate
the proposed method. Eight different classifiers were
tested and optimised. The KNN model demonstrated
the best performance with the highest surface defect
identification accuracy of 93.15%. The proposed method
has successfully detected and classified surface defects
of additively manufactured parts with minimal human
input. Based on the technology developed in this work,
future research can be conducted to automatically
repair the surface defects by generating DED tool paths
based on the point cloud data, with the target to
further enhance the productivity of DED processes.
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