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A B S T R A C T   

Early detection of defects, such as keyhole pores and cracks is crucial in laser-directed energy deposition (L-DED) 
additive manufacturing (AM) to prevent build failures. However, the complex melt pool behaviour cannot be 
adequately captured by conventional single-modal process monitoring approaches. This study introduces a 
multisensor fusion-based digital twin (MFDT) for localized quality prediction in the robotic L-DED process. The 
data used in multisensor fusion includes features extracted from a coaxial melt pool vision camera, a microphone, 
and an off-axis short wavelength infrared thermal camera. The key novelty of this work is a spatiotemporal data 
fusion method that synchronizes multisensor features with the real-time robot motion data to achieve localized 
quality prediction. Optical microscope (OM) images of the printed part are used to locate defect-free and 
defective regions (i.e., cracks and keyhole pores), which serve as ground truth labels for training supervised 
machine learning (ML) models for quality prediction. The trained ML model is then used to generate a virtual 
quality map that registers quality prediction outcomes within the 3D volume of the printed part, thus eliminating 
the need of physical inspections by destructive methods. Experiments show that the virtual quality map closely 
matches the actual quality observed by OM. Compared to traditional single-sensor-based quality prediction, the 
MFDT has achieved a significantly higher quality prediction accuracy (96%), a higher ROC-AUC score (99%), 
and a lower false alarm rate (4.4%). As a result, the MFDT is a more reliable method for defect prediction. The 
proposed MFDT also lays the groundwork for our future development of a self-adaptive hybrid processing 
strategy that combines machining with AM for defect removal and quality improvement.   

1. Introduction 

Additive manufacturing (AM) has shown remarkable potential in 
manufacturing geometrically complex products with improved me-
chanical performance, reduced weight, and shortened product design 
and development lifecycles [1–3]. In particular, laser-directed energy 
deposition (L-DED) process has been applied for the manufacturing of 
large-scale metallic parts in the aerospace, marine, and offshore in-
dustries [4–8]. However, maintaining high quality consistency, dimen-
sional accuracy, and process repeatability remains a substantial 
challenge in such large-format metal AM techniques. Despite employing 
pre-optimized process parameters, defects such as cracks and keyhole 
pores might still occur due to localized heat accumulation, surface 

fluctuation, speed inconsistencies, and gas entrapment [9–11]. Pores 
and cracks formed during the AM process can severely impair the me-
chanical performance of the printed parts. Therefore, early detection 
and correction of defects are crucial in AM to prevent build failures. 

Recently, significant efforts have been made for in-situ monitoring 
and defect detection in AM [12–16]. The state-of-the-art in-process 
sensing technologies utilize either vision or infrared (IR) thermal sensors 
to capture the process characteristics (e.g., melt pool geometries, 
acoustic emissions, temperature histories, etc.), combined with machine 
learning (ML) models for defect prediction. One of the most widely used 
methods in various AM processes is vision-based in-situ monitoring 
[17–19]. For example, real-time surface defect detection can be ach-
ieved by a vision camera with deep learning-based object detection 
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algorithms, which was successfully implemented in wire and arc addi-
tive manufacturing (WAAM) [20,21] and AM-fabricated continuous 
fibre-reinforced polymer [22]. For laser-based AM processes, a vision 
sensor with near-infrared (NIR) optical filters can be applied to monitor 
molten pool dynamic behaviours [9], which can be used for deposition 
height detection [23], closed-loop feedback control [24–26], and dis-
tinguishing melting states through melt pool motion features [27]. 
Furthermore, with additional temperature information, an IR thermal 
camera can be more effective than a visual sensor for observing in-situ 
melt pool dynamics. For instance, Criales et al. [28] used in-situ ther-
mal camera recording to investigate the effects of process parameters 
and scan strategies on the melt pool size and shape, as well as powder 
particle spattering and heating and cooling rates during laser powder 
bed fusion (L-PBF). It was discovered that dynamic fluctuations in melt 
pool geometries were linked to microstructure characteristics. Grasso 
et al. [29] also extracted essential temperature features and conducted 
statistical analysis to detect unstable behaviour of the process plume 
during the L-PBF. Khanzadeha et al. [30] developed a real-time porosity 
prediction method using melt pool morphological features extracted 
from thermal images. Supervised ML approaches were used to classify 
melt pools to predict porosity within the parts. Similarly, Mao et al. 
utilized thermal signatures and a Convolutional neural network (CNN) 
for lack of fusion (LoF) porosity prediction [31]. Other porosity pre-
diction methods using optical thermal imaging were also reported in 
[32–34]. 

Apart from vision and infrared thermal sensing approaches, acoustic 
monitoring has recently emerged as a more versatile and cost-effective 
alternative for in-situ defect detection in AM. Compared to vision and 
thermal sensors, acoustic sensors require minimal modifications to AM 
machines and have a significantly higher sensitivity to laser-material 
interactions [35]. Shevchik et al. [36,37] used a fibre Brag grating 
(FBG) sensor to capture acoustic emission (AE) signals related to LoF 
porosity defects in the L-PBF process. The deep CNN model was trained 
on wavelet transform (WT) characteristics to predict porosities and 
achieved 89% accuracy. Subsequently, Drissi-Daodi et al. [38] proposed 
a CNN-based AE signal classification approach to differentiate process 
regions, including conduction mode, keyhole porosity, LoF porosity, and 
balling defects in different materials. Instead of the FBG sensor, they 
employed a low-cost microphone sensor to capture airborne AE signals. 
Tempelman et al. [24] used acoustic monitoring to detect keyhole pores 
formation in L-PBF. A support vector machine (SVM) classifier was 
trained on spectral features to identify keyhole pores formation with up 
to 97% accuracy within 7.5 ms. Bevans et al. [24] introduced in-situ 
acoustic sensing to identify flaw formation in the metal inert gas elec-
tric arc welding process. To detect flaws, a wavelet graph signal analysis 
was applied to extract features from the arc sound. However, acoustic 
monitoring in L-DED is significantly more challenging than in L-PBF and 
WAAM processes due to the noisy surroundings. Recently, an acoustic 
denoising strategy for L-DED was proposed in [39], and a CNN model 
trained on Mel-Frequency Cepstral Coefficients (MFCCs) was used to 
classify the laser-material interaction sound in L-DED in order to predict 
cracks and keyhole pore formations [40]. 

The aforementioned in-situ monitoring methods have shown po-
tential in predicting specific types of defects (e.g., LoF, balling, keyhole 
pores, etc.) for online monitoring of the AM process. Nevertheless, there 
are two major limitations in the existing methods: (1) the lack of 
location-specific quality prediction capability and (2) the lack of robust 
and reliable defect prediction models for real production as opposed to 
specimen creation with artificially introduced defects. ML models for in- 
situ defect prediction in most existing methods are trained by data ac-
quired from purposefully created defective components with suboptimal 
process settings. However, in a real production context, the product is 
manufactured using pre-optimized process parameters, and defects may 
stochastically occur in different locations throughout the part volume. 
Furthermore, the traditional single-modal sensing technique is unable to 
capture the complex melt pool behaviour. Vision sensors can only 

provide geometric information about the melt pool. The vision camera’s 
restricted temperature sensitivity range might not be sufficient for 
process monitoring [41]. Thermal sensors in the short wavelength 
infrared (SWIR) band typically necessitate a time-consuming tempera-
ture calibration procedure. The emissivity of heat affected zone is gov-
erned by a number of factors, including material phase, temperature, 
and surface roughness. Inaccuracies in temperature measurements can 
jeopardize the robustness of defect prediction. Although the acoustic 
sensing approach has high sensitivity, it is susceptible to environment 
noises. As a result, no single sensing approach could predict defects and 
part quality in a holistic and robust manner. To address this challenge, 
multisensor monitoring has been proposed as it is able to alleviate the 
disadvantages of individual sensors and allow for a more robust and 
reliable defect prediction [42]. 

Prior research has been reported on multisensor monitoring and data 
fusion for laser-based AM. Pandiyan et al. [43] proposed a deep 
learning-assisted multimodal sensing strategy that integrates four sen-
sors (back reflection (BR), Visible, Infrared (IR), and AE) to predict 
defective regions in the L-PBF process. The authors demonstrated that 
the BR and AE sensors could be more informative than the vision and IR 
sensors. In addition, a feature-level fusion method was proposed by Li 
et al. [44,45] for L-PBF, where in-situ signal features from a photodiode 
and a microphone were fused using a CNN-based model to predict 
quality. The fusion of two sensor information outperformed the 
single-modal prediction. Perani et al. [46] applied a CNN-based archi-
tecture to predict track geometry deposited by L-DED by fusing coaxial 
melt pool images with process input data (e.g., laser power and speed 
command, laser activation status (ON/OFF)). As compared to traditional 
single-modal online-monitoring approaches, the proposed method can 
predict localized track size with high accuracy. Petrich et al. [47] also 
conducted a proof-of-concept study on multimodal sensor fusion in 
L-PBF, and reported that incorporating additional information from 
other sensing modalities can considerably improve single optical 
imaging-based defect prediction. However, multisensor fusion in the 
L-DED for internal quality mapping was rarely reported due the lack of 
spatiotemporal fusion attempts that could generate data features useful 
for localized defect prediction. 

In this paper, a multisensor fusion-based digital twin (MFDT) is 
proposed for location-specific quality prediction in the robotic L-DED 
process. The key novelty of this work is a spatiotemporal data fusion 
method that synchronizes multisensor features with the real-time robot 
motion data to achieve localized quality prediction. In this research, 
three sensors are used during the data fusion: (1) a coaxial vision camera 
for melt pool geometry monitoring, (2) a microphone sensor capturing 
the laser-material interaction sound, and (3) an off-axis SWIR thermal 
camera monitoring the temperature field. Real-time robot tool-centre- 
point (TCP) positions are acquired from the robot controller. Ex-situ 
optical microscope (OM) images of printed parts are used to locate 
defect-free and defective regions (i.e., cracks and keyhole pores), which 
serve as ground truth labels for training supervised machine learning 
(ML) models for localized quality prediction. The trained ML model is 
then used to generate a virtual quality map that registers quality pre-
diction outcomes within the 3D volume of the printed part, thus elimi-
nating the need of physical inspections by destructive methods. 
Experimental results demonstrate that the virtual quality map closely 
matches the actual quality observed by OM. In addition, compared to 
traditional single-sensor-based quality prediction methods, the MFDT 
has achieved a significantly higher defect prediction accuracy (96%), a 
higher ROC-AUC score (99%), and a lower false alarm rate (4.4%). 
Therefore, the proposed MFDT is proven to be a reliable and robust 
approach for defect prediction. The proposed MFDT also sets the foun-
dations for our future development of a self-adaptive hybrid processing 
strategy that combines machining with AM for defect removal and 
quality improvement. 

The rest of the paper is organized as follows. Section 2 introduces the 
overall framework of the proposed MFDT. Section 3 describes the 
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experimental procedures, software architecture, as well as the sub- 
systems and data processing methods in the MFDT that leads to the 
localized quality prediction and mapping capability. Section 4 presents 
the results of the MFDT evaluation and validation with comparisons 
between MFDT and traditional single-sensor-based defect prediction 
methods. Finally, Section 5 concludes the study by summarizing the key 
findings and proposing future work on MFDT for a self-adaptive hybrid 
processing strategy. 

2. Overview of the framework 

Fig. 1 depicts an overview of the proposed multisensor fusion-based 
digital twin (MFDT) framework for localized defect prediction. The 
proposed MFDT consists of four main steps:  

i A multisensor in-situ monitoring setup with Robot Operating System 
(ROS)-based software platform is developed. Sensor-captured pro-
cess data includes coaxial melt pool images, temperature field data, 
and acoustic signals during the robotic L-DED process. Sections 3.1 
and 3.2 show the system configuration and software architectures, 
respectively.  

ii Key features are extracted from each sensor, and spatiotemporal data 
fusion is performed to synchronize and register the multisensor 
features within the part’s 3D volume. It is the prerequisite for sub-
sequent quality prediction. Details on the feature extractions and 
data fusion method are described in Sections 3.3-3.5. 

iii After multisensor feature extraction and selection, various super-
vised machine learning (ML) models are trained to map the spatio-
temporally fused datasets to the quality labels within the entire 
volumetric domain. Ex-situ quality inspections via optical micro-
scopy (OM) are conducted to locate defect-free regions as well as 

keyhole pores and cracks. The output class of the ML models had four 
labels: ’laser-off’, ’defect-free’, ’cracks’ and ’keyhole pores’. Cracks 
and keyhole pores are considered as defective regions that must be 
removed once they are detected to avoid further quality deteriora-
tion. Among the tested ML classifiers, neural networks (NN) out-
performed all others and are deployed on the ROS-based software 
platform.  

iv The trained ML model is used to identify regions to be removed 
during the L-DED process. A virtual quality map that registered 
quality prediction outcomes within the 3D volume of the printed part 
is generated. Defect boundaries can be extracted from the virtual 
quality map for subsequent defect correction using robotic 
machining. 

The following section describes the details of the system setup, 
software architectures, experimental procedures, and individual com-
ponents and data processing steps in the MFDT. 

3. Methodology 

3.1. System setup and experimental procedures 

Fig. 2(a) depicts a dual-robot hybrid additive-subtractive 
manufacturing system. The system consisted of a robotic L-DED cell 
and a robotic machining cell. In the L-DED process, a 6-axis industrial 
robot carried a coaxial powder-blown nozzle, while a 2-axis positioner 
held the workpiece [48]. A 1070 nm laser beam melted the powder 
material as it was injected into the substrate, forming a melt pool. As the 
nozzle travelled in the feed direction, the molten material solidified 
rapidly in the molten pool area. For the robotic machining process, the 
milling spindle was mounted on the end-effector of the industrial robot. 

Fig. 1. The proposed multisensor fusion-based digital twin (MFDT) framework for location-dependent defect prediction in robotic L-DED.  
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When the MFDT detected flaws during the L-DED process, the AM pro-
cess can be stopped, and robotic machining was used to remove the 
defective regions. The dual-robot hybrid system with a high degree of 
freedom (DoF) enables flexible fabrication of extremely large work-
pieces and paves the path for self-adaptive hybrid processing. 

As shown in Fig. 2(b) and Fig. 3, three sensors were integrated into 
the robotic L-DED for in-situ process monitoring:  

• A thermal infrared camera was placed next to the printed part to 
monitor the temperature field of the printed part’s region of interest 
(ROI) at a frequency of 30 Hz. The thermal image processing 

technique presented in our earlier work [49] was used to extract key 
temperature features.  

• A coaxial CCD camera with an acquisition frequency of 30 Hz was 
mounted on the laser head. The coaxial visual melt pool image was 
acquired by the visible spectrum CCD camera through a set of 
reflecting lenses. An optical NIR band-pass filter was attached to the 
camera lens to isolate the melt pool from the surrounding spatters. 

• A microphone sensor was used to capture the laser-material inter-
action sound during the L-DED process. The microphone had a fre-
quency response range of 50 – 20,000 Hz and was positioned near the 
laser nozzle. The sampling rate was set to 44,100 Hz. The sound 

Fig. 2. Experimental setup. (a) Dual-robot hybrid additive-subtractive manufacturing system from SIMTech; (b) multisensor monitoring setup for robotic L-DED.  

Fig. 3. The schematic diagram of the multisensor monitoring for the robotic L-DED system.  
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contained noise, such as inert gas flow, machine movement and 
powder flow. Our previous work on acoustic signal denoising [39] 
was used to extract laser-material interaction sound. 

Apart from the sensing modalities mentioned above, a laser 
displacement sensor was used to detect surface defects and perform in- 
process adaptive dimension correction, as detailed in our previous work 
[50–53]. The built-in servo encoders from the KUKA robot measured 
joint position at a frequency of 250 Hz. Ethernet communication be-
tween the robot controller and a personal computer (PC) was used to 
obtain robot tool-centre-point (TCP) position data. All sensing modal-
ities were connected to the PC running an Ubuntu operating system and 
an in-house developed software platform with ROS. 

In this research, we created a multimodal dataset by producing six 
single bead wall components with different process parameters and 
varying dwell time (i.e., 0, 5, 10 seconds) between the layers using 
commercial maraging steel C300 powder, as shown in Table 1. Unlike 
most sensor-based defect detection studies in the literature, we did not 
intentionally manufacture flaws by using suboptimal parameters. 
Instead, we used pre-optimized process parameters from start to end to 
deposit materials, enabling us to observe the shift from the defect-free to 
the defective regime. We kept the energy density (P/v) constant (0.92 
kW⋅s /mm) while increasing the laser power (P) and scanning speed (v) 
proportionally for the two sets of process parameters (2.3 kW, 25 mm/s 
and 2.53 kW, 27.5 mm/s). Each process parameter combination was 
printed once. The dwell length between each layer was increased (from 
0 to 5 to 10 seconds) to postpone the onset of defects since it provides 
cooling time to reduce localized heat build-up. As a result, defects 
appeared in different locations of the part for different samples. The 
sample fabricated with a longer dwell period contained fewer flaws. 
Cracks and keyhole pores emerged at a higher layer in samples fabri-
cated with longer dwell time. Optical microscope (OM) images were 
collected for each sample to determine the locations of cracks and 
keyhole pores inside the component. The OM images were used as 
physical quality labels that served as ground truth for defect prediction. 
Fig. 4 depicts the sample wire-cutting, ex-situ quality inspections, and 
location-specific quality registration procedures. The wire-cutting pro-
cess removes the outer surface of the single bead wall, allowing us to 
observe the location-specific quality. We took OM image of the x-z 
surface rather than the y-z cross-sections. This simplifies the data 
labelling procedure since we can register the multisensor signals along 
the deposition toolpath with the location of the corresponding defect. 
Hot cracks and keyhole pores were observed in the OM image as a result 
of localized heat accumulation. The rapid heating and cooling cycles in 
single bead wall deposition resulted in unstable melt pools, causing 
material evaporation and the formation of large gas-entrapped keyhole 
pores. High thermal stresses on metal caused by a higher concentration 
rate of solidifying metal can induce hot cracks. Keyhole pores are often 

large spheroidal shapes with diameters of several millimetres, while hot 
cracks have lengths of several millimetres, as seen in the Fig. 4. 

In this research, we did not seek for individual defects detection. 
Instead, we conduct region-based defect prediction. i.e., the ML model 
predicts the "quality regions" to which current time stamp belongs. A 
"quality region" is defined by a signal segment (500 ms) that corresponds 
to approximately 12 mm of deposition length. If cracks or keyhole pores 
occurred within the segment, the entire segment was labelled as "cracks" 
or "keyhole pores". Despite the fact that the OM image indicated certain 
gaps between the cracks and pores, such gaps were labelled with the 
same category as their neighbouring defect. This region-based data 
annotation is due to two reasons: (1) if the neighbouring region contains 
cracks or porosity, the overall region quality is poor. Regardless of how 
many cracks or pores exist, the entire region must be removed; (2) the 
gaps between the defects are extremely narrow (only around 1-2 mm). 
Defects are in close proximity to one another. As a result, identifying 
precise pores or cracks in the signal is extremely challenging. The 
quality in the neighborhood of a defect is assumed to belong to the same 
defective category, which avoids mismarking and enhances model 
robustness to certain multisensor signal. The length of the region (i.e., 
500 ms) was chosen as a compromise between ML model accuracy and 
spatiotemporal resolutions. 

The following sub-section will introduce the overall software archi-
tecture of the proposed MFDT. 

3.2. Software architecture 

A software platform was developed to implement the proposed 
MFDT framework. Fig. 5 shows the software architecture, which lever-
aged on a similar ROS-based multi-nodal architecture as in [54] and 
[52] to enable PC-sensor/robot communications. The details are 
explained as follows:  

• The raw signal from each sensor is acquired by the sensor SDK driver 
nodes. The raw acoustic signal, raw thermal images, and raw coaxial 
melt pool images are published to three separate ROS topics, which 
are then used for in-situ data processing. The raw acoustic signal is 
extracted at 44,100 Hz. The raw coaxial vision images and thermal 
images are extracted at 30 Hz. Meanwhile, a PC-robot interface based 
on ROS-industrial packages and KUKA Robot Sensor Interface is 
developed, which extracted the robot’s real-time TCP position data 
at 250 Hz.  

• As the raw data from each sensor is retrieved by the driver nodes, 
subsequent in-situ data processing and feature extraction proced-
ures, such as acoustic signal denoising, temperature feature extrac-
tion, and coaxial image processing, are carried out in separate nodes. 
The key sensor data features, such as acoustic spectrum descriptors, 
melt pool morphologies (width, length, contour area, etc.), and 
temperature information, are published to various ROS topics and 
can be visualized in real-time using the PlotJuggler tool [55]. These 
extracted features from different sensing modalities are published at 
a frequency of 30 Hz. Since all the multisensor feature extraction 
nodes are executed in parallel at the same time stamp, they can be 
synchronized with the real-time robot position data. 

• The trained ML model is implemented in a ROS node, which sub-
scribes to the key multisensor features and predicts various quality 
categories including laser-off, defect-free, cracks and keyhole pores. 
The prediction outcomes are made accessible as a ROS topic pub-
lished at 30 Hz. The predicted quality value is also registered with 
the robot TCP position data, which provided spatial information 
about the defect locations.  

• Finally, a virtual quality map is generated by subscribing to both TCP 
position data and the predicted quality outcomes. The virtual quality 
map can show the predicted quality values within the 3D volume of 
the deposited part, thus eliminating the need of physical inspections 
by destructive methods. Furthermore, the milling head can be moved 

Table 1 
L-DED process parameters and setup during the experiments for multisensor 
data collection.  

Parameters Values 

Part geometry Single bead wall structure 
Dimension 90 mm * 42.5 mm 
Number of layers per sample 50 
Laser power (kW) [2.3, 2.53] 
Speed (mm/s) [25, 27.5] 
Dwell time between the layers (s) [0, 5, 10] 
Laser beam diameter (mm) 2 
Powder flow rate (g/min) 12 
Energy density (kW⋅s /mm) 0.92 
Hatch space (mm) 1 
Layer thickness (mm) 0.85 
Stand-off distance (mm) 12 
Material Maraging Steel C300 
Types of defects generated Cracks, keyhole pores  
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to the defective locations to remove the material based on the virtual 
quality map. 

The Graphical User Interface (GUI) of the in-house developed soft-
ware platform for multisensor monitoring is depicted in Fig. 6. The GUI 
can subscribe and visualize various key sensor features (e.g., melt pool 

Fig. 4. Sample wire-cutting schematic, ex-situ quality inspections utilizing OM images, and location-specific quality registrations.  

Fig. 5. ROS-based software architecture for multisensor in-situ monitoring, feature extraction, spatiotemporal feature registration, and defect prediction.  
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width, acoustic signal spectrum descriptors, robot motion, etc.) during 
the robotic L-DED process. 

3.3. Multisensor monitoring and feature extraction 

In this sub-section, we introduce the multisensor feature extraction 
techniques. The extracted features are used for spatiotemporal data 
fusion and localized quality prediction. 

3.3.1. Coaxial melt pool geometry monitoring 
The coaxial melt pool geometric features can represent the melt pool 

heat transfer state and process stability. Fluctuations in the melt pool 
geometry could indicate localized heat accumulation, potential build 
anomalies and defects [56]. We adopted a similar method as presented 
by Knaak et al. [57] to extract melt pool morphological information. 
Melt pool width and length represented by a Minimum Oriented 
Bounding Boxes (OBB) and an ellipse were chosen as key features. In 
addition, we extracted the melt pool contour area, convex hull area, 
centroid positions, and central moments to describe melt pool dynamics. 
The definitions of these features are explained in Table 2. All the feature 
extractions were implemented by the OpenCV C++ library. 

Fig. 7 demonstrates the coaxial melt pool image processing for 
feature extractions. The raw melt pool image (Fig. 7(a)) was binarized 
(Fig. 7(b)). Then various features can be visualized in Fig. 7(c)-(f). Fig.s 
8(a)-(d) shows time-series plots of key coaxial melt pool geometric 
features when printing a single-bead wall structure. In Fig. 8(a), the 
ellipse width and maximum contour area shared a similar trend. When 
printing the initial layers, the melt pool area and width dropped, then 
increased and became less stable over time. A similar trend can be seen 
for convex hull area, μ20, μ02 and rectangle bounding box width and 
length. This was due to the change in the heat conduction mechanism 
that occurred during the deposition process (i.e., less material to 
conduct the heat as the part was built higher). The localized heat 
accumulation caused material vaporization and the formation of cracks 
and gas-induced pores, which were regarded as abnormal printing 

states. The third-order central moment of the melt pool (μ03) in Fig. 8(c) 
exhibited a high sensitivity to process anomaly, where the process 
transiting from the stable to the unstable zone can be observed from its 
dynamic fluctuations. 

Fig. 6. GUI of the multisensor monitoring software platform for robotic L-DED process.  

Table 2 
List of coaxial melt pool geometric features  

Feature 
name 

Mathematical expression/definition Description 

Melt pool 
contour 
area 

m00 =
∑

x

∑

y
I(x,y)ΔA 0th order 

moment, where 
I(x, y) represents 
pixel intensities 

Melt pool 
centroid 
position 

x =
m10

m00
; y =

m01

m00 

1st order moment 
represents the 
centre of gravity 
(COG) 

Central 
Moments 
(μji) 

μji =
∑

x

∑

y
I(x,y)⋅(x − x)j⋅(y − y)j Moment of 

probability 
distribution 
about the COG, 
where (x, y) is 
the COG 

Convex hull 
area 

C ≡ {
∑N

j=1λjpj : λj ≥ 0 for all j and
∑N

j=1λj =

1 }

The smallest 
convex set that 
contains the melt 
pool contour 

Bounding 
rectangle 
width and 
length 

Minimum Oriented Bounding Boxes (OBB) 
algorithm [58] 

Bounding rotated 
boxes for 
contours 

Ellipse 
width and 
length 

(xcosa + ysina)2

a2 +
(xsina − ycosa)2

b2 = 1  
Calculates the 
ellipse that fits 
the melt pool 
contour in a 
least-square 
sense  
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3.3.2. In-situ acoustic monitoring 
Acoustic-based monitoring methods provide distinct advantages 

over vision-based sensing, such as adjustable sensor setup and lower 
hardware costs. Recently, an acoustic denoising technique was pro-
posed, which can significantly reduce the noise and enhance the defect 
prediction performance for L-DED [39]. The denoised signal was used to 
extract features and perform data analysis. As listed in Table 3, several 
spectral descriptors and Mel-Frequency Cepstral Coefficients (MFCCs) 
were selected as key acoustic features based on our previous research 

[40]. Fig. 9 visualizes the time-domain variations of the key acoustic 
characteristics collected from L-DED of a single bead wall structure. 
Interestingly, the MFCC0 and MFCC1 acoustic features in Fig. 9(a) 
exhibited the same trend as the coaxial melt pool width and area in Fig. 8 
(a). The value dropped for the initial layers and then steadily climbed as 
the fluctuations increased. This is also true for spectral bandwidth and 
flatness in Fig. 9(c). Nevertheless, the MFCC2, MFCC3, spectral centroid 
and variance had an inverse association with melt pool size and width (i. 
e., initially increase, then gradually decrease), as seen in Fig.s 9(b) and 

Fig. 7. Coaxial melt pool image processing and geometric feature extraction.  

Fig. 8. Time series plots of coaxial melt pool geometric features when printing a single bead wall structure. (a) Max contour area and fitted ellipse width of melt pool. 
(b) Melt pool second moment of area (note: Mu20 means μ20, Mu02 means μ02 in the figure), (c) Melt pool convex hull area and third moment of area (μ03). (d) Melt 
pool width and length fitted by a minimum bounding rectangle box. 
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(d). This finding suggests that, like vision features, in-situ acoustic data 
may be capable of describing process stability and defect occurrences 
that are previously represented by melt pool width in most research. 

3.3.3. Temperature field monitoring 
Temperature field data from printed parts can be used to identify 

potential process anomalies. The emissivity value for the commercial 
C300 maraging steel was set to 0.5 for the entire process prior to 

extracting the temperature features. Although the true temperature 
profile cannot be accurately measured due to emissivity differences in 
material composition, phase, and temperature, the time-series thermo-
graphic images can reflect the general trend and fluctuations of the 
temperature values during the process. In this study, the melt pool 
temperature was not measured, since the liquidus molten pool had a 
different emissivity value than the solidified region. Instead, we 
captured the temperature field data for the entire printed single-bead 
wall structure (i.e., the ROI was defined as the area that contains the 
entire part). The thermal camera was perpendicular to the printed wall, 
capturing the entire part temperature inside its field of view. As the 
essential temperature field features, we extracted the peak temperature, 
mean temperature, temperature variance, and standard deviation within 
ROI, as defined in Table 4. The thermal properties of the single-bead 
wall structure are shown in Fig. 10. During the initial layers, the peak 
temperature, temperature variance, and standard deviation steadily 
increased before approaching a steady state. The mean temperature, on 
the other hand, increased gradually with the height of the part. This 
observation demonstrates the changes in the heat conduction mecha-
nism when depositing a single bead wall structure, where heat was 
conducted to the base plate when printing the initial layers and con-
duction changed to 2D when the part was built higher, eventually 

Table 3 
List of acoustic features and mathematical definitions  

Feature name Mathematical expression Description 

MFCCs C(x(t)) = F− 1[log(F[x(t)])] Cepstrum of a signal x(t). F 
represents the Fourier transform 
function, and F− 1 is inverse Fourier 
transform. The number of MFCCs is 
set to 12. (i.e., frequency bands are 
equally spaced on the Log-scale). 

Spectral 
centroid (SC) SCt =

∑N
n=1mt(n) ⋅n

∑N
n=1mt(n)

Centre of gravity (COG) of the 
magnitude spectrum (Weighted 
mean of the frequencies) 

Spectral 
bandwidth 
(SBW) 

SBWt =
∑N

n=1|n − SCt |⋅mt(n)
∑N

n=1mt(n)

Weighted mean of distance of 
frequency bands from SC 

Spectral 
flatness (SF) 

SFt =
(
∏N

n=1mt(n))

1
n

1
n
∑N

n=1
mt(n)

The ratio of the geometric mean of 
the spectrum to the arithmetic 
mean of the spectrum 

Spectral 
variance 

μ2 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N

n=1(n − SCt)
2mt(n)

∑N
n=1mt(n)

√
The standard deviation around the 
spectral centroid. 

Spectral 
skewness 

μ3 =
∑N

n=1(n − SCt)
3mt(n)

(μ2)
3∑N

n=1mt(n)

The third-order moment of 
spectrum, measuring the symmetry 
around the centroid. 

Spectral 
entropy (H) Ht =

−
∑N

n=1mt(n)⋅log(mt(n))
log(N)

Shannon entropy of the power 
spectral density (PSD).  

Fig. 9. Time series plots of acoustic features when printing a single bead wall structure. (a) MFCC0 and MFCC1, representing cepstrum energy in the low frequency 
band (0 Hz - 1024 Hz). (b) MFCC2 and MFCC3, representing cepstrum energy in the middle frequency band (1024 Hz - 4096 Hz). (c) spectral bandwidth and spectral 
flatness. (d) spectral centroid and variance. (Note: the acoustic signal is denoised using method presented in [39] before feature extractions.). 

Table 4 
List of temperature field features and mathematical definitions  

Feature name Mathematical expression/ 
definition 

Description 

Peak temperature Highest temperature value in 
the current timestamp 

Peak temperature within 
ROI 

Mean temperature 
μ =

∑n
i=1xi

N 
Mean temperature value 
within ROI 

Temperature standard 
deviation (std) σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − μ)2

N

√ Temperature standard 
deviation within ROI 

Temperature variance 
(span) Var[X] = S2 =

∑N
i (Xi − μ)2

(N − 1)
Temperature variance 
(span) within ROI  
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reaching a steady state. 
The extracted key features from the vision, acoustic and thermal 

sensing modalities were synchronized and registered with the real-time 
robot TCP position data retrieved from the robot controller. Subsequent 
ML model prediction outputs were also tagged with TCP positions (i.e., 
the x,y,z coordinates), allowing for location-specific quality predictions. 
The details on spatiotemporal data fusion are explained in the next sub- 
section. 

3.4. Spatiotemporal data fusion 

After extracting features from multisensor inputs, the features were 
spatiotemporally registered with robot TCP positions for location- 
specific quality mapping. All features from different sensing modalities 
were extracted and collected at the same time stamp using the ROS- 
based software platform. Fig. 11 illustrates the synchronization and 
registration of multisensor features, ML prediction outcomes, and robot 
TCP positions. Although each sensor had a different acquisition fre-
quency (raw acoustic image at 30 Hz, raw acoustic signal at 44,100 Hz, 
and raw thermal image at 30 Hz), the extracted features for all three 
sensing modalities were made available at a consistent frequency of 30 
Hz. During each 33 ms period, key features of the acoustic signals were 
extracted, including both time-domain and frequency-domain informa-
tion, such as spectral descriptors and MFCCs. These acoustic time- 
frequency representations were able to effectively depict the acoustic 
events that occurred within the interval without any loss of information. 
In order to synchronize the sensor features that were published from 
different channels, we implemented the Approximate Time Synchro-
nizer algorithm from the ROS message filter module [59]. Messages 

from various sensing modalities can be aligned using the Approximate 
Time Synchronizer based on their respective time stamps. The algorithm 
identified the most recent message among the topic-specific queues as a 
reference point within a defined interval (i.e., the prediction window as 
illustrated in Fig. 11). These messages were then synchronized within a 
specified threshold, which was 33 ms. The ML model can then make a 
prediction in each prediction window using the synchronized multi-
sensor features from different channels. Additionally, the features and 
ML prediction outputs can also be aligned and registered with TCP po-
sitions based on their time stamps using the Approximate Time Syn-
chronizer algorithm. 

In this study, we did not seek absolute synchronization and regis-
tration between the multisensor feature, ML prediction, and TCP posi-
tion. Since computer program execution times varied slightly, it was 
impractical to ensure that all messages were published at the exact time 
stamps. While there was a small latency (<30 ms) due to approximate 
synchronization, which could cause the predicted defects to be slightly 
delayed (< 1 mm) compared to the actual defect location, it was suffi-
cient for real-world applications because we only need to know the 
approximate boundaries (or layers) of the defective regions. Further-
more, the prediction delay induced by computing (e.g., inference time 
for the trained ML model) was also omitted because it was on the order 
of microseconds, which had little influence on real-word application 
performance. 

Fig. 12 depicts feature-level digital twins of the L-DED process after 
the multisensor features are registered spatiotemporally with the robot 
TCP position data. The interior quality of the part was examined under 
optical microscope (OM) image, as shown in Fig. 12. The OM image 
reveals large keyhole pores in the upper layers, cracks in the middle 

Fig. 10. Time series plots of temperature field features when printing a single bead wall structure. (a) Temperature variance and standard deviations within ROI, (b) 
Peak temperature and mean temperature. 

Fig. 11. Illustration of synchronization and registration between multisensor features, ML predictions and TCP positions.  
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layers, and a defect-free zone in the lower layers of the part. In partic-
ular, two macroscale cracks can be observed in the centre of the sample. 
These defective spots can be matched with the multisensor feature 
values as shown in the spatial plots in Fig. 12. For example, abrupt in-
creases in melt pool width (marked as “anomalies”) in the middle layers 
were linked to the macro-scale cracks observed from the OM image, 
while larger melt pools in the top layers could reflect keyhole porosity. It 
may also be seen that different sensing modalities shared similar pat-
terns within the part volume. For example, the acoustic signal’s MFCCs 
features, spectral centroid, and bandwidth characteristics exhibited 
abrupt value changes at the same locations that correspond to the cracks 
(marked as “anomalies”), as seen in coaxial melt pool features. The 
temperature field feature, on the other hand, was unable to identify such 
anomalies, indicating its limited effectiveness in distinguishing cracking 
defects. Nonetheless, all features from different sensing modalities fol-
lowed a similar trend, with the value increasing (e.g., melt pool ellipse 
width, contour area, peak temperature) or decreasing (e.g., MFCC2, 

MFCC3, spectral centroid, Mu03) with time and layer height, corre-
sponding to localized heat accumulation and quality deterioration. 

The fused multimodal dataset was used to train supervised ML 
models that predict the defect occurrences. An exploratory data analysis 
(EDA) was conducted prior to ML model training to further analyse the 
multimodal dataset and provide guidance for ML model selections, 
which will be shown in the next sub-section. 

3.5. Exploratory data analysis 

Finding correlations between critical multisensor features prior to 
incorporating them into ML models for quality classification can deter-
mine the complexity of the ML model required for defect prediction. 
Exploratory data analysis (EDA) is conducted on in-situ extracted key 
multisensor feature data. The whole dataset consists of a total of 27 
features from three sensing modalities: 4 temperature field features from 
infrared thermal sensing, 9 features from coaxial melt pool geometric 

Fig. 12. Spatial visualization of multisensor features and physical quality observed from OM photo.  
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features, and 14 features from the denoised laser-material interaction 
sound. Fig. 13 depicts Spearman’s correlation matrix [60] for the 
collected multimodal dataset. The value ranges from -1 to 1, with 1 
indicating the most positive correlation, -1 indicating the highest 
negative correlation, and 0 indicating no correlation. The correlations 
between the features from different sensing modalities were surprisingly 
strong. Traditionally, melt pool width has been the most common 
quality indicator used to represent the process’s stability. According to 
Fig. 13, a number of characteristics from acoustic sensing modalities had 
a strong correlation with the melt pool width ("ellipse width"). For 
example, MFCC0, MFCC1, and spectral bandwidth from acoustic sensing 
modality had a strong positive correlation (>0.7) to melt pool width, 
whereas MFCC2 and MFCC3 exhibited a strong negative correlation 
(<-0.7). This finding reveals that when melt pools reach unstable phases 
in which the width grows as the parts are built higher, the acoustic signal 
energy in the middle-frequency bands (MFCC2, MFCC3) decreases while 
it increases in the low-frequency bands (MFCC0, MFCC1). This also 
demonstrates the potential of acoustic sensing for the L-DED process, 
where acoustic features can be used as quality indicators for in-situ 
monitoring and closed-loop feedback control applications. Further-
more, as shown in Fig. 14, we used four dimensionality reduction 
techniques to analyse the multidimensional dataset:  

(1) Linear Discriminant Analysis (LDA): a dimensionality reduction 
technique for finding a linear combination of features that 
maximally separates different classes in a dataset. LDA can 
handle large datasets efficiently. Fig. 14(a) depicts the LDA pro-
jection on 2D space, which indicates separable clusters for each of 
the output labels. The "laser-off" signal can be easily distinguished 
from the others. "Keyhole pore" can also be differentiated from 
defect-free regimes, whereas cracks are much more difficult to 
isolate.  

(2) Principal Component Analysis (PCA): a dimensionality reduction 
technique that decompose the multivariate dataset into a set of 
orthogonal components, capturing the key structure of the data. 
PCA is sensitive to data scaling and cannot capture nonlinear 
relationships in the data. Fig. 14(b) demonstrates that PCA is not 
as effective as LDA in distinguishing classes, yet "laser-off" data 
can still be easily separated from the other classes. 

(3) Isometric Mapping (Isomap): a nonlinear dimensionality reduc-
tion method that uses geodesic distances to preserve a dataset’s 
structure and lower its dimensionality. Isomap shows a similar 
separation effect as LDA.  

(4) T-distributed Stochastic Neighbour Embedding (t-SNE): a 
nonlinear dimensionality reduction method that preserves the 
local structure of the data. t-SNE is well-suited for datasets with 

Fig. 13. Spearman’s correlation heatmap of key multisensor features and output class (i.e., ’0′ - laser-off, ’1′ - defect free, ’2′ - cracks, ’3′ - keyhole pores).  
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complex structures. t-SNE exhibits a similar separation effect as 
LDA and Isomap. 

The dimensionality reduction results in Fig. 14 reveal that the 
multidimensional dataset can form distinct clusters in low-dimensional 
space. In particular, the signals from the "laser-off" can be distin-
guished from the others the most clearly. The "defect-free" category is 
unique from "keyhole pore", with very little overlap. The "crack" cate-
gory, on the other hand, has a high degree of overlap with the "defect- 
free" and "keyhole pore" categories, implying that the crack signal may 
be difficult to distinguish from the other classes. The above exploratory 
data analysis proves that a supervised ML model is feasible to classify 
different quality using the multidimensional dataset. However, it might 
be challenging to accurately predict the crack occurrences (i.e., mis-
classifying the "cracks" as "keyhole pores" or "defect-free" is possible). 
Therefore, selecting ML algorithms with hyperparameters that can 
handle high dimensional and non-linearly separable data is required, 
which will be shown in the next sub-section. 

3.6. Machine learning models for localized quality prediction 

Seven supervised ML algorithms were evaluated in this study to 
predict L-DED defects (cracks and keyhole pores) using the multimodal 
dataset described in the previous sections. The seven ML algorithms 
were Support Vector Machine (SVC), K-Nearest-Neighbour (KNN), De-
cision Trees (DT), Random Forest (RF), Neural Network (NN), Logistic 
Regression (LR), and Gradient Boosting Trees (GB). The open-source 
Scikit-learn Python package [61] was used to implement the algo-
rithms for training and testing. The whole multimodal fused dataset 
comprised of 292,200 data points that correspond to each robot’s TCP 

position at recorded timestamps. Each data point was labelled with a 
ground truth quality category based on OM image observations. The 
dataset was divided into a training set and a testing set in a ratio of 8:2. 
The grid search approach was used to optimize hyperparameters for ML 
models. The grid search is an extensive search methodology that com-
pares all feasible hyperparameter value combinations. K-fold 
cross-validation (k=10) was conducted to assess performance 
throughout each iteration of the hyperparameter tuning procedure. The 
k-fold cross-validation is performed for each of the k-folds, and the final 
accuracy score is the average of the k-accuracy values. The hyper-
parameter combination with the highest cross-validated score is chosen 
at the end of the grid search. Table 5 shows the investigated hyper-
parameter ranges and the final optimum hyperparameters for each ML 
model. For testing, seven ML algorithms with optimal hyperparameters 
after training and tuning are employed. Section 4 will present and 
discuss the model performance evaluation results. 

4. Results and discussion 

The performances of ML classification models are examined and 
discussed in this Section. The ML model with the highest prediction 
accuracy is chosen to be implemented on the proposed MFDT frame-
work. The predicted quality values can be registered with the position 
data to achieve location-specific quality prediction. This Section shows 
the virtual quality map that registers the quality prediction outcomes 
with the location information. 

4.1. Model evaluation 

To validate the effectiveness of the proposed multisensor fusion over 

Fig. 14. Low-dimensional visualization of multisensor features by different dimensionality reduction techniques: (a) Linear Discriminant Analysis (LDA), (b) 
Principal Component Analysis (PCA), (c) Isometric Mapping (Isomap), (d) T-distributed Stochastic Neighbour Embedding (t-SNE). 
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the traditional single-sensor-based defect prediction methods, ML 
models were trained and tested on both the multisensor fused dataset 
and the dataset with only single sensing modality features provided (i.e., 
trained with only acoustic features, only vision features, or only thermal 
features). Both the multisensor fusion dataset and the single sensing 
dataset were randomly split into a training set and a test set to assess the 
model performance. Since the data distribution was imbalanced, the 
stratified random split was used to divide the training and test datasets. 
The ratio of the train to test is 8:2. The total multisensor fused dataset 
consisted of 29,200 data points corresponding to each robot TCP loca-
tion at recorded time stamps for all samples. To demonstrate its viability 
and repeatability, all of the ML model evaluations reported in this paper 
were averaged over five runs, with standard deviations marked as error 
bars. The evaluation metrics for the ML classification models are 
described as follows:  

• Accuracy score: the accuracy score is the total correctly predicted 
sample divided by total prediction, which can be defined as: 

Accuracy =
TP + TN

TP + FP + TN + FN
(1)   

where TP is true positive, TN is true negative, FN is false negative, and 
FP is false positive. The total accuracy score evaluates the model’s 
overall performance in multiclass classification. The test accuracy of the 
ML models trained on the multisensor fusion dataset significantly out-
performed the models trained using single sensing modality features, as 
shown in Fig. 15(a). Among all classifiers, the NN classifier scored the 
highest overall accuracy (95.6%) and was chosen to be deployed on the 
MFDT software platform. Furthermore, it can be observed that the 
acoustic-based sensing modality achieved almost the same prediction 
accuracy as the vision-based sensing approach. Thermal sensing was less 
accurate than vision and acoustic sensors in predicting quality.  

• Receiver Operating Characteristics (ROC) curve: the x-axis of ROC 
plots is the false positive rate (FPR) (i.e., percentage of FP out of the 
negatives), and the y-axis is the true positive rate (TPR) (i.e., per-
centage of true positives out of positives). The definitions of them 
are: 

FPR =
FP

FP + TN
(2)  

TPR =
TP

TP + FN
(3)   

The ROC curve assessed the model’s performance for classification 
problems at various threshold levels. Better performance was repre-
sented by the curve approaching the upper-left corner (i.e., FPR ap-
proaches to 0, and TPR approaches to 1). As demonstrated in Fig. 16, the 
NN classifier trained on the multisensor fusion dataset outperformed the 
NN trained on single sensing modalities in terms of the ROC curve for 
each class. 

• Aera under the ROC (AUC-ROC) scores: The AUC-ROC score repre-
sents the degree of separability. It tells how much the model is 
capable of distinguishing between classes. The higher the AUC, the 
better the model is at predicting the true positives and true negatives. 
As shown in Fig. 16, NN trained on a multisensor fusion dataset 
achieved almost perfect AUC scores for each class, while those 
trained on single sensing features had significantly lower AUC-ROC 
scores (e.g., cracks predicted by the vision sensor has only 0.93 
score). The comparison is shown in Fig. 15(b), where NN is the best 
classification model in terms of the AUC-ROC score.  

• Confusion matrix: A confusion matrix is a type of contingency table 
with two dimensions ("ground truth" and "predicted") and the same 

Table 5 
Optimal hyperparameters and their range studied in our ML models for 
multisensor-based quality prediction  

Models Hyperparameters Optimal 
values 

Range studied 

SVM Kernel 
Regularization parameter 
(C) 
Kernel coefficient (γ) 

RBF 
1000 
0.01 

[’linear’, ’rbf’, 
’sigmoid’] 
[1, 10, 100, 1000, 
1500] 
[1e-2,1e-3, 1e-4] 

KNN Number of neighbours 
Weight function 

10 
Distance 

[4, 5, 6, 8, 10, 20, 50] 
[’uniform’, ’distance’] 

DT Minimum sample split 
Maximum depth of the tree 

3 
10 

[2, 3, 4, 5, 6] 
[2, 5, 10, 20, 30] 

RF Minimum sample split 
Number of tree estimators: 
Maximum depth of the tree 

2 
300 
50 

[2, 3, 4, 5, 6] 
[2, 5, 10, 100, 300, 500] 
[2, 5, 10, 50, 100] 

NN Number of neurons 
Alpha 
Activation function 

(16, 64, 256) 
0.1 
‘ReLU’ 

[16, 32, 64, 256, 512] 
[1e-3, 1e-2, 1e-1] 
[‘tanh’, ‘ReLU’, 
‘sigmoid’] 

LR Regularization (C) 
max iteration 

1.0 
500 

[1.0, 0.1] 
[500, 1000] 

GB Number of estimators 500 [10, 100, 500, 1000]  

Fig. 15. Performance evaluation for multisensor fusion-based defect prediction in L-DED. (a) The overall test accuracy of seven supervised ML classifiers trained 
using single sensing modality features and multisensor fusion features. (b) AUC-ROC results of seven ML classifiers trained on single sensing modality features and 
multisensor fusion features. 
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sets of "classes" in both dimensions (each combination of dimension 
and class is a variable in the contingency table). It is a more 
comprehensive method of evaluating ML classifier performance 
because it can show which classes are incorrectly classified. Fig. 17 
compares the confusion matrix for NN prediction using the multi-
sensor fusion dataset versus the single sensing datasets. The NN 
trained on multisensor fusion had the best accuracy (89.6 %) in 
predicting the "cracks" class, while those trained on vision and 
acoustic-based sensing had only 75 % -76 % in crack prediction. The 
multisensor fusion also achieved significantly higher accuracy (94.3 
%) for keyhole pore predictions, which is nearly 14.5% higher than 
utilizing vision-based sensing, 17.6% higher than acoustic-based 
sensing, and 21.2% higher than thermal-based sensing.  

• False alarm rate: the actual non-defect region (including the ’laser- 
off’ period and ’defect-free’) predicted as defective (including 
’cracks’ and ’keyhole pores’) is considered a false alarm. From the 
confusion matrix in Fig. 17, the multisensor fusion-based prediction 
achieved the lowest false alarm rate (4.4%) than the other single- 
sensing-based prediction (11% for vision-based, 8.4% for acoustic- 
based, and 8.4% for thermal-based). 

4.2. Visualization of localized quality prediction 

In this Section, the proposed MFDT capability is demonstrated by 
depositing a single-bead wall sample. The trained NN model was 

deployed in the software platform for localized quality prediction. The 
predicted quality result was made accessible through a ROS topic 
broadcast at a frequency of 30 Hz. At each time stamp, the predicted 
quality (i.e., ’laser-off,’ ’defect-free,’ ’cracks,’ and ’keyhole pores’) can 
be paired with real-time robot position coordinates, allowing for local-
ized defect prediction. Fig. 18(a) shows the physical quality of the 
printed single-bead wall structure, with defect-free zones in the initial 
layers, cracks in the middle layers, and keyhole pores in the upper 
layers. In this research, we did not seek for individual defects detection. 
Instead, we predict the defective regions as shown in the in the Fig. 18 
(a). If cracks or keyhole pores occurred in a 500 ms segment (approxi-
mately 12 mm neighbourhood), the entire signal for that region were 
labelled as "cracks" or "keyhole pores". Despite the fact that the OM 
image indicated certain gaps between the cracks and pores, such gaps 
were labelled with the same category as their neighbouring defect. The 
region-based data annotation is due to two reasons: (1) if the neigh-
bouring region contains cracks or porosity, the overall region quality is 
poor. Regardless of how many cracks or pores exist, the entire region 
must be removed; (2) the gaps between the defects are extremely narrow 
(only around 1-2 mm). Defects are in close proximity to one another. As 
a result, identifying precise pores or cracks in the signal is extremely 
challenging. The quality in the neighborhood of a defect is assumed to 
belong to the same defective category in region-based data annotation, 
which avoids mismarking and enhances model robustness to certain 
multisensor signal misalignment. The length of the region (500 ms 

Fig. 16. Receiver operating characteristic (ROC) curves for the defect classification task by NN classifier trained on (a) acoustic features, (b) vision features, (c) 
thermal features, (d) multisensor fused features. The results demonstrate superior classification accuracy of the NN classifier trained using multisensor fusion than 
trained using single sensing modality. 
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segment) was determined by trial and error as a compromise between 
ML model accuracy and spatiotemporal resolutions. 

A virtual quality map was constructed by combining the predicted 
quality values and location information, as shown in Fig. 18(b)-(e). The 
"laser-off" period occurred at the toolpath’s turning corners and was 
hence not shown in Fig. 18. Fig. 18(b) depicts the virtual quality map 
predicted by NN utilizing multisensor features (all vision, acoustic, and 
thermal features combined), which closely matched the physical quality 
values acquired from OM. There were very few locations that were 
incorrectly categorized by the multisensor fusion-based prediction. 
However, as shown in Fig.s 18(c)-(e), the virtual quality maps predicted 
using only vision, acoustic or features performed significantly worse. 
The vison-only and acoustic-only predictions tended to exaggerate 
defect occurrences (i.e., predicting a defect-free zone as flawed), 
whereas the thermal-only prediction tended to underestimate defect 
occurrences. Therefore, the multisensor fusion is proved to be a more 
reliable and robust approach compared to single-sensor monitoring 
methods. 

The proposed MFDT framework can perform localized quality pre-
diction in the robotic L-DED process. However, it is worth noting that the 

complete digital twin comprises not only the mapping of physical en-
tities in the virtual space but also the control of physical systems based 
on the predicted outcomes in the virtual space. Our work presented in 
this paper focuses primarily on the first half of the digital twin (i.e., 
mapping physical entities in the virtual space). Although the other half 
of the digital twin (i.e., controlling physical entities) is not the key focus 
in this study, it can also be accomplished based on the proposed MFDT 
framework. Physical process control can be achieved in the following 
three ways, which is part of our on-going research: 

i The machine learning (ML) model makes a localized quality pre-
diction every 30 milliseconds and issues warning signals to the user 
interface of our L-DED system when defects are detected. The process 
can be paused automatically to prevent further quality deterioration 
once warning signals are received. 

ii In addition to categorical defect prediction, the ML model can pre-
dict the likelihood of defect occurrence. This defect occurrence 
probability can be used as a feedback signal for closed-loop process 
adjustment. For example, when the probability of a defect 

Fig. 17. Confusion matrix for the defect classification task for NN classifier trained on (a) acoustic features, (b) vision features, (c) thermal features, (d) multisensor 
fused features. The results demonstrate superior classification accuracy of the NN classifier trained using multisensor fusion than trained using single 
sensing modality. 
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occurrence is high, the laser power or robot speed can be adjusted to 
reduce localized heat accumulation.  

iii As the proposed MFDT framework has been implemented in a dual- 
robot hybrid additive-subtractive manufacturing system (refer to 
Section 3.1), defective regions identified on the virtual quality map 
can be removed by robotic machining automatically at the locations 
predicted by the MFDT, before the subsequent layers are deposited. 

We would like to highlight that establishing a reliable quality pre-
diction model is the foundation for subsequent decision-making for 

physical process control. Future studies will focus on developing phys-
ical process control methods for adaptive quality enhancement based on 
the proposed MFDT. 

5. Conclusions and future work 

In this paper, a novel multisensor fusion-based digital twin (MFDT) 
framework was proposed for localized quality prediction in the robotic 
L-DED process. The main contribution of this study was to develop a 
spatiotemporal data fusion method for synchronizing and registering 

Fig. 18. Visualization and comparison of virtual quality map generated by the trained NN model: (a) ground truth defect obtained by optical microscope, showing 
defect-free regions in initial layers, cracks in in the middle layers, and keyhole pores in the upper layers. (b) defect prediction with multisensor fusion features, 
combining all acoustic, vision, and thermal features; (c) defect prediction with only vision features; (d) defect prediction with only acoustic features; (e) defect 
prediction with only thermal features. 
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multisensor features within the 3D volume of the printed part. A coaxial 
melt pool vision camera, an acoustic microphone sensor, and an off-axis 
infrared thermal camera were used to extract key features. Supervised 
machine learning models were trained on the multisensor fusion dataset 
to predict location-specific quality values such as defect-free, cracks, and 
keyhole pores. The predicted quality combined with location informa-
tion was used to generate a virtual quality map that closely matched the 
physical quality of the printed component. Furthermore, the proposed 
MFDT performance surpassed the single-sensor-based defect prediction 
in terms of overall accuracy (96%), ROC-AUC score (99%), and false 
alarm rate (4.4%). Since the locations of defects were known within the 
dual-robot hybrid AM system’s global coordinate frame, robotic 
machining can be employed to remove the defects and avoid further 
quality deterioration. As a result, the proposed MFDT provides a solid 
foundation for developing a self-adaptive hybrid processing strategy 
that is capable of improving part quality and removing defects auto-
matically without human intervention. 

One limitation of this work is that the use of thermal imaging is 
restricted to thin-walled parts. However, we believe that the proposed 
method can be extended to general bulk parts (i.e., multi-layer, multi- 
track) by adjusting the IR thermal camera’s viewing angle. In a related 
study, Chen et al. [62] used off-axis thermal images to extract key 
thermal history features from L-DED-fabricated bulk samples for hard-
ness distribution prediction. However, this approach may not work for 
more complex geometries where the thermal camera’s field of view is 
blocked. One possible solution is to use multiple thermal cameras placed 
at different positions to capture the temperature distribution of the part 
from different viewpoints. This would overcome the limitation of only 
capturing the temperature from one side of the part. Another limitation 
of our current approach for localized defect registration is that it is 
limited to thin walls. However, we believe that the underlying physical 
phenomenon of keyhole pore formation and crack initiation is similar 
across different geometries (i.e., mainly due to localized heat accumu-
lation). Therefore, the ML model trained using thin wall sample could 
also identify defects in other structures. To validate the effectiveness of 
our approach on 3D structures, we plan to conduct experiments on 
larger, more complex geometries in our future research. This will help to 
bridge the gap between this study and real-world defect detection ap-
plications. In addition, the proposed MFDT framework can potentially 
be used for process-structure-property (PSP) causal analytics in future 
studies. The input process parameter (e.g., laser power, scanning speed, 
powder feeding rate) combined with TCP position data (x, y, z co-
ordinates) can be used to infer the quality and defects of as-printed parts 
[63], which could provide valuable information for process planning 
and closed-loop control. The proposed MFDT framework will also be 
extended to other materials and manufacturing processes, such as 
wire-arc additive manufacturing (WAAM) and wire-based L-DED. 
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