
        Abstract - In-situ monitoring is critical for detecting 
process anomalies and defect occurrences in additive 
manufacturing (AM). Traditional vision-based sensing 
approaches focused on extracting melt pool geometric 
information, while thermal-based monitoring focused on melt 
pool temperature measurement. This paper proposes an in-
situ melt pool monitoring method utilising infrared thermal 
imaging for a robot-based direct energy deposition (DED) 
process. A high-resolution infrared thermal camera is 
employed to monitor the melt pool region, and a ROS-based 
multi-nodal software was developed to enable in-situ thermal 
image processing and melt pool feature extraction. The key 
contribution of this work is the development of a multi-
feature extraction pipeline. Both melt pool geometric and 
thermal characteristics, such as contour area, centroids, 
elliptical width, peak temperature, and temperature variance, 
can be extracted and visualised in real time. The image 
processing and feature extraction pipeline can work 
concurrently with the sensor data acquisition. Experiment 
results are presented to show the effectiveness of the proposed 
in-situ melt pool monitoring method. It is found that melt pool 
geometric and thermal features share a similar trend in the 
temporal domain. 

Keywords - additive manufacturing; in-situ process 
monitoring; feature extraction; infrared thermal imaging; 
melt pool 

I. INTRODUCTION

Additive manufacturing (AM) has grown in popularity in 
recent years as a result of its distinct advantages in design 
flexibility, waste reduction, and the ability to fabricate 
complex geometries [1]. Such benefits are particularly 
attractive to the aerospace, automotive, and defence 
industries [2], [3]. However, quality inconsistency and 
defects remain major problems in most AM processes. In-
situ monitoring is the key to detecting process anomalies 
and enabling adaptive process control to ensure the quality 
of the as-built products.  
 Conventional vision-based monitoring techniques 
focus on the extraction of melt pool geometric 
characteristics. For example, melt pool geometry captured 
by a CMOS camera can be correlated to process parameters 
during the DED process [4], where the melt pool width can 
directly reflect the laser power level and stability of the 
process. Based on the melt pool geometric features, 
adaptive process control can be implemented to reduce 
process disturbances and enhance the part quality [5]. 

Vision-based sensing was also used for deposition height 
monitoring by laser triangulation technique [6]. Recently, 
the authors' research group proposed a vision-based in-situ 
monitoring and adaptive process control technique [7]–
[10], in which a co-axial CCD camera captures real-time 
melt pool images, and a laser displacement sensor inspects 
the in-process part surface conditions. In-situ data 
processing and machine learning-enabled early surface 
defect detection can provide feedback that is utilised to 
adaptively improve the dimensional accuracy. 
 While vision-based monitoring is useful for 
understanding the melt pool geometric characteristics, melt 
pool temperature features and thermal history are also 
helpful in identifying potential process anomalies and 
predicting part quality. Recent research on mechanistic 
property prediction of as-build DED parts based on thermal 
history has shown great potential [11], [12]. However, in 
most applications, thermal monitoring was achieved by 
using a pyrometer sensor [13], or an infrared camera [14], 
which only obtains temperature readings.  
 In this paper, we present an in-situ melt pool 
monitoring method for laser aided additive manufacturing 
(LAAM) using high-resolution infrared thermal imaging. 
The real-time thermal images are used to extract multiple 
melt pool geometric features (e.g., contours, centroids, 
width, length, etc.) and thermal features (e.g., temperature 
peak, mean, variance, kurtosis, etc.). A multi-nodal 
software based on the Robot Operating System (ROS) is 
developed to support in-situ image processing, feature 
extraction and visualisation, which operates in parallel and 
automatically during the LAAM process. The proposed 
method sets the basis for in-situ quality prediction in AM 
utilising infrared thermal imaging. 

II. METHODOLOGY

A. System setup

As shown in Figure. 1, the proposed in-situ melt pool 
monitoring system was implemented on a robot-based 
LAAM cell, which consists of a 6-axis industrial robot 
(KUKA KR90), a 2-axis positioner, a laser head with a co-
axial powder feeding nozzle, and a high-resolution short-
wave infrared (SWIR) thermal camera (Infratec). The 
thermal camera was rigidly mounted on the end-effector of 
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the robot, which captures melt pool images during the 
LAAM process with a maximum frame rate of 60 Hz. 
 

 
Figure 1. In-situ melt pool monitoring setup: (a) the robot-based 
LAAM setup, (b) infrared thermal camera mounted beside the 

laser head with a fixture. 

 
B.  ROS-based multimodal software platform 
 
Figure 2 depicts the in-house developed ROS software's 
Graphical User Interface (GUI) for in-situ monitoring of 
the LAAM process. The GUI allows for real-time 
visualisation of raw thermal images, cropped and 
converted binary melt pool images, and in-situ extracted 
features. Furthermore, the software platform also supports 
robot motion monitoring by retrieving the deposition 
position, velocity, and acceleration from the robot 
controller via PC-robot ethernet communication. 
 The details of the software architecture are illustrated 
in Figure 3. The rectangular blocks denote the "nodes" in 
ROS programs, and the elliptical blocks represent the 
"topics" for multi-channel data communication [15]. The 
infrared thermal camera and robot controller are connected 
to a PC running the Ubuntu 18.04 operating system. The 
TCP/IP communication protocol is used by the PC-robot 
interface. The robot controller transmits data on the robot's 
joint states (position), velocity, and acceleration to the PC. 
The PC can also send commands to the sensor and robot, 
such as switching on the thermal camera and turning on/off 
the laser. The physical motion of the robot is reflected in 
the GUI, featuring a digital twin of the real-time LAAM 
process.  
 An IR camera driver node acquires raw thermal images 
via the PC-sensor interface, which is subscribed by the 
image processing node. Following that, the image 
processing node performs image thresholding and region 

of interest (ROI) extraction. The resultant binarized melt 
pool region is then utilised to extract geometric features. 
The melt pool thermal characteristics, on the other hand, 
are derived straight from the raw images. Both raw and 
binarized pictures are saved for offline analysis. The 
"topics" channel's data can be seen in real time in the GUI. 
 The details on the in-situ geometric and thermal feature 
extraction are provided in the next section. 
 

 
Figure 2. Graphic User Interface (GUI) of the in-house 
developed ROS software for in-situ process monitoring. 

 
Figure 3. Software architecture 

 
C.  In-situ feature extraction 

 

Several key melt pool features are extracted for in-situ 
monitoring. Table 1 lists the selected melt pool geometric 

Thermal 
camera 

Fixture 

Positioner 

Industrial 
robot 

(a) 

(b) 

Laser 
nozzle 

1479

Proceedings of The 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on December 28,2022 at 05:09:59 UTC from IEEE Xplore.  Restrictions apply. 



 

and thermal features and their mathematical expressions 
and definitions. Geometric features include melt pool 
contour area, convex hull area, second moment of area, 
centroid position, and elliptical width and length. The 
feature definitions are adapted from [16] and implemented 
in the OpenCV python library [17]. Apart from geometric 
features, melt pool thermal features are also extracted. The 
temperature distribution of the melt pool is related to the 
process conditions and part quality. Unstable melting states 
can lead to dimensional inaccuracy, which is attributed to 
the heating and cooling within the melt pool regions [18]. 
The melt pool temperature distribution could also reflect 
the heat transfer conditions. For example, large melt pool 
temperature variance indicates a strong convection state 
[18]. Kurtosis is a measure of the non-gaussianity of the 
melt pool temperature distribution, which is related to 
deposition speed (i.e., higher speed results in a heavier tail 
in the molten pool, while lower speed makes the melt pool 
temperature distribution more gaussian-like). The 
skewness value quantifies the distribution's asymmetry, 
which is also affected by the process circumstances. As a 
result, for thermal feature extraction, the peak temperature, 
temperature variance, skewness, and kurtosis are chosen. 
 

  TABLE I 
List of features extracted from the thermal camera  

 

Category Feature name 
Mathematical 

expression/definitions 

Geometric 
features 

Melt pool 
contour area 

𝑚଴଴ ൌ  ෍෍𝐼ሺ𝑥,𝑦ሻ∆𝐴
௬௫

 

Melt pool second 
moment of 

contour area 
𝑥ଶ ൌ

𝑚ଶ଴

𝑚଴଴
;𝑦ଶ ൌ

𝑚଴ଶ

𝑚଴଴
 

Melt pool 
centroid position 

𝑥̅ ൌ
𝑚ଵ଴

𝑚଴଴
; 𝑦ത ൌ

𝑚଴ଵ

𝑚଴଴
 

Convex hull area 
Based on OpenCV definition 

[17] 

Meld pool ellipse 
width and length 

ሺ𝑥 cos𝑎 ൅ 𝑦 sin 𝑎ሻଶ

𝑎ଶ

൅
ሺ𝑥 sin 𝑎 െ 𝑦 cos𝑎ሻଶ

𝑏ଶ
ൌ 1 

Temperature 
features 

Peak temperature 
Highest temperature value in the 
current timestamp 

Temperature 
variance 𝑉𝑎𝑟ሾ𝑋ሿ ൌ  𝑆ଶ ൌ

∑ ሺ𝑋௜ െ 𝑋തሻଶே
௜

ሺ𝑁 െ 1ሻ
 

Temperature 
skewness 𝜇෤ଷ  ൌ

∑ ሺ𝑋௜ െ 𝑋തሻଷே
௜

ሺ𝑁 െ 1ሻ ∗ 𝜎ଷ
 

Temperature 
kurtosis 𝑘𝑢𝑟𝑡ሾ𝑋ሿ ൌ 𝐸 ቈ൬

𝑋 െ 𝜇
𝜎

൰
ସ

቉ 

 
III. RESULTS AND DISCUSSION 

 
A LAAM experiment was conducted to test the 
effectiveness of the proposed in-situ melt pool monitoring 

method. A rectangular block sample with a 30x30 mm size 
consisting of 5 layers was deposited using maraging steel 
300 powder. The nominal deposition speed was 20 mm/s. 
The physical positions of robot tool-centre-point (TCP) 
and velocity data are shown in Figures 4 and 5, respectively. 
Significant positioning variations and speed 
inconsistencies are seen during deposition, which might 
lead to defects in the as-built component. 
 

 
Figure 4. Visualisation of robot TCP position data during the 

LAAM experiment. 

 
Figure 5. Visualisation of robot TCP velocity data during the 

LAAM experiment. 

The in-situ thermal image processing pipeline for melt pool 
geometric feature extraction is shown in Figure 6, which 
was carried out in the ROS node as mentioned in the 
Section II B. The raw thermal image in RGB colour is 
shown in Figure 6(a). It was converted into grey scale in 
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Figure 6(b), with pixel intensities (normalised to 0-255) 
representing the temperature levels. Figure 6(c) shows the 
isothermal lines to segment the melt pool area according to 
the material-specific temperature threshold. The 
segmented regions are described as the heat affected zone 
(HAZ), liquid-solid area, and liquid metals, which are key 
melt pool metallurgical features. Image binarization is 
conducted on the grey-scale images to isolate the melt pool 
region of interest (ROI). Based on the binarized images, 
melt pool contour extraction and elliptical shape fitting is 
conducted as shown in Figure 6(e) and (f).  
 

 
Figure 6．In-situ thermal image processing pipeline: (a) 
raw thermal image in RGB colour format; (b) grey-scale 
image with pixel intensities representing temperature 
levels; (c) melt pool area segmentation by material-specific 
temperature threshold; (d) binarized melt pool by adaptive 
thresholding; (e) melt pool contour extraction; (f) melt pool 
area fitted by elliptical and rectangular shapes. 
 
The extracted melt pool geometric and thermal features 
were collected during the process for offline analysis. As 
shown in Figure 7, all the features are normalised so that 
they have a zero mean and unit variance. It can be observed 
that all the features share a similar trend. The value in the 
second layer rises more drastically than in the first, 
followed by a sharp decline in the third layer. In the fourth 
layer, the value goes up with much more fluctuations. The 
variations in the feature might be ascribed to cyclic heating 
and cooling during deposition, which will be investigated 
further in the future. In Figure 8, we present a spatial 
visualisation of the melt pool peak temperature during the 
LAAM process. 

 
Figure 7. Comparisons of normalised melt pool geometric and 

thermal features show similar trends. 

 
Figure 8. Peak temperature visualised in the spatial domain. 

 
IV. CONCLUSION 

 
In this paper, we presented an in-situ melt pool monitoring 
approach for the LAAM process based on infrared thermal 
imaging. The main contribution of this work was to 
develop a melt pool multi-feature extraction pipeline. 
During the LAAM process, key melt pool geometric and 
thermal features were retrieved and visualised in real time. 
The pipeline for thermal image processing and feature 
extraction was implemented in an in-house developed ROS 
software, which allowed for concurrent program execution 
with shared data communication. The in-situ collected 
features were visualised and compared. The melt pool's 
geometric and thermal properties were discovered to have 
similar tendencies, which would be explored further in our 
future research. 
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