
Additive Manufacturing 69 (2023) 103547

Available online 10 April 2023
2214-8604/© 2023 Elsevier B.V. All rights reserved.

Research paper 

In-situ crack and keyhole pore detection in laser directed energy deposition 
through acoustic signal and deep learning 

Lequn Chen a,b, Xiling Yao c,*, Chaolin Tan a, Weiyang He d, Jinlong Su a, Fei Weng c, 
Youxiang Chew a, Nicholas Poh Huat Ng b, Seung Ki Moon b,* 

a Advanced Remanufacturing and Technology Centre (ARTC), A*STAR, 3 Cleantech Loop, 637143, Singapore 
b School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore 
c Singapore Institute of Manufacturing Technology (SIMTech), A*STAR, 5 Cleantech Loop, 636732, Singapore 
d School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore   

A R T I C L E  I N F O   

Keywords: 
Additive manufacturing 
Laser directed energy deposition 
Acoustic signal processing 
Convolutional Neural Networks 
Deep learning 
In-situ defect detection 

A B S T R A C T   

Cracks and keyhole pores are detrimental defects in alloys produced by laser directed energy deposition (LDED). 
Laser-material interaction sound may hold information about underlying complex physical events such as crack 
propagation and pores formation. However, due to the noisy environment and intricate signal content, acoustic- 
based monitoring in LDED has received little attention. This paper proposes a novel acoustic-based in-situ defect 
detection strategy in LDED. The key contribution of this study is to develop an in-situ acoustic signal denoising, 
feature extraction, and sound classification pipeline that incorporates convolutional neural networks (CNN) for 
online defect identification. Microscope images are used to identify locations of the cracks and keyhole pores 
within a part. The defect locations are spatiotemporally registered with acoustic signal. Various acoustic features 
corresponding to defect-free regions, cracks, and keyhole pores are extracted and analysed in time-domain, 
frequency-domain, and time-frequency representations. The CNN model is trained to predict defect occur-
rences using the Mel-Frequency Cepstral Coefficients (MFCCs) of the laser-material interaction sound. The CNN 
model is compared to various classic machine learning models trained on the denoised acoustic dataset and raw 
acoustic dataset. The validation results shows that the CNN model trained on the denoised dataset outperforms 
others with the highest overall accuracy (89%), keyhole pore prediction accuracy (93%), and AUC-ROC score 
(98%). Furthermore, the trained CNN model can be deployed into an in-house developed software platform for 
online quality monitoring. The proposed strategy is the first study to use acoustic signals with deep learning for 
in-situ defect detection in LDED process.   

1. Introduction 

Laser directed energy deposition (LDED) additive manufacturing 
(AM) process uses a focused laser beam to melt metallic powders or 
wires while depositing them on a layer-by-layer basis to form the desired 
geometry. LDED has gained significant interest in the aerospace, 
defence, marine and offshore industries over the last decade owing to its 
unique advantages in fabrication flexibility, waste reduction, surface 
modification and repair [1–4]. In particular, LDED is suitable for pro-
ducing large metallic parts with higher productivity and lower cost 
compared to other metal AM techniques, such as laser powder bed 
fusion (LPBF) and material extrusion [5]. Despite its achievements, 
LDED still faces substantial challenges in terms of quality consistency 

and process repeatability. In-situ process monitoring with online 
anomaly detection is critical to ensure successful AM production [6]; 
however, it is challenging due to the complicated melt pool dynamics 
that occur during the rapid melting and solidification process. Many 
defects (cracking, porosity, layer delamination, etc.) and mechanical 
properties (hardness, tensile strength, ductility, etc.) can only be 
observed and evaluated by destructive testing. Most existing 
non-destructive testing (NDT) methods are still infeasible for online 
monitoring applications due to the extremely high-temperature envi-
ronment of the process. 

Vision-based in-situ monitoring is one of the most popular moni-
toring strategies for laser-based AM in recent years. A coaxial vision 
camera or an infrared (IR) thermal camera can be used to monitor melt 
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pool morphologies and temperature features, which can reflect the 
melting, cooling, and heat transfer states [7–9]. For example, 
Gonzalez-Val et al. [10] monitored the melt pool during the DED process 
using a high-speed Medium Wavelength Infrared (MWIR) camera. A 
CNN model was developed to extract quality indicators from raw im-
ages, which were then used to quantify dilution and predict defective 
spots. Similarly, Grasso et al. [11] monitored the energy-material in-
teractions in selective laser melting (SLM) of zinc powder through 
infrared imaging. Features were extracted from the IR images, and sta-
tistical analyses were conducted to detect unstable melting conditions. 
Smoqi et al. [12] employed a coaxial pyrometer to obtain thermal im-
ages of the melt pool, which were used to extract melt pool signatures 
such as peak temperature and contour area. The features were fed back 
into a closed-loop controller, which can improve microstructure ho-
mogeneity by reducing localized heat accumulation. A similar approach 
of vision-based melt pool process control and an adaptive quality 
enhancement method have also been shown in [13–15]. Apart from melt 
pool monitoring, vision sensors can be used for online surface defect 
detection [16–18], surface roughness, or track geometry prediction of 
additive manufactured components [19–23]. For instance, Li et al. [16] 
developed a vision-based real-time surface defect (i.e., surface pore, slag 
inclusions, groove, etc.) detection method through the YOLO algorithm 
for wire and arc additive manufacturing (WAAM). A surface defect 
identification approach was recently developed for LDED based on laser 
line scanning and in-situ point cloud processing [24]. Follow-up 
research has also demonstrated the capabilities of vision sensors for 
in-process defect correction [25] for adaptive quality enhancement. 

Although vision-based monitoring solutions have attained a certain 
level of industrial readiness, their implementation is often time- 
consuming and expensive. Calibration is required for laser displace-
ment sensors or depth cameras to ensure accurate measurement of part 
surface geometry [26]. The sensing capability of various visual sensors 

differs significantly as well. For IR thermal cameras, emissivity cali-
brations are needed to ensure accurate temperature readings. This is 
especially difficult because metal emissivity varies with temperature, 
wavelength, material phase, and many other factors [27]. Actual tem-
perature profiles around the melt pool cannot be measured precisely 
[28]. In addition, the difficulties of sensor integration also limit the use 
of vision sensors. Coaxial vision sensor installation requires a custom-
ized laser head design, while off-axis melt pool monitoring requires 
image transformation that is less reliable and accurate. For industry 
end-users, the trade-off between sensing accuracy, sensor prices, and 
sensor integration complexity is indeed a primary concern. 

Acoustic-based monitoring approaches, on the contrary, offer unique 
advantages such as flexible sensor configurations, fast dynamic 
response, and cheaper hardware costs. In the LPBF and LDED, acoustic 
signals produced by laser-material interactions may include information 
about complicated physical phenomena such as melting, solidification, 
crack propagation, and pore growth [29]. In addition, the monitoring 
setup does not require any modification of AM equipment. Such merits 
make acoustic monitoring particularly attractive to the AM community. 
Although there is limited study on acoustic monitoring in laser-based 
AM, it has been extensively used to inspect welding quality, such as 
penetration depth [30], porosity and cracks [31]. However, since ad-
ditive manufacturing is a layer-by-layer process with complex geome-
tries, acoustic signal related to defect formation is much more complex 
than in welding. 

Recent research has revealed acoustic-based monitoring approaches 
in the LPBF process [32–35], which has achieved promising outcomes in 
predicting pore concentrations [36], classifying different materials and 
defect types (lack-of-fusion, keyhole, balling, etc.) [37], using 
semi-supervised learning to identify process errors [38], and applying 
transfer learning to inspects the quality across different materials [39]. 
The applications were achieved by a low-cost microphone or a fibre 

Fig. 1. Overview of the proposed in-situ defect detection framework through acoustic signal processing and deep learning.  
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Bragg grating sensor, which collected raw acoustic signals and directly 
used them for training the ML models. In the LPBF process, noise can 
have a significant impact on the acoustic signal due to the presence of 
protective gas flow, recoating, and powder delivery systems. Since the 
laser-powder interactions taking place on a small scale, the noisy 
chamber environment can affect the acoustic signal for in-situ process 
monitoring. However, in LPBF, the recoater and powder delivery system 
are not in motion during the laser scanning, so the noise primarily comes 
from the protective gas flow. In contrast, LDED has a more complex 
noise composition, as protective gas flow and the powder stream hitting 
the substrate are substantial sources of noise, making it difficult to 
analyse the laser-material interaction sound. Only a few research were 
reported to tackle the challenge of acoustic monitoring in LDED. For 
example, Hossain et al. [40] developed a transducer-based sensing de-
vice that was mounted to a part’s substrate and collected acoustic 
emission (AE) signals during the DED process. The statistical method 
was used to verify that AE signals are correlated to the DED part quality. 
However, the proposed sensor setup lacks flexibility, and further 
investigation is needed. Recent work presented by Prieto et al. [41] also 
showed the possibility of using microphone acoustic signal for crack 
detection in DED, while the investigation was still in the 
proof-of-concept stage. Similar research on AE monitoring in LDED has 
been reported by Gaja and Liou [42] and Hauser et al. [43]. While prior 
studies focused on acoustic signal analysis, feature extractions and 
monitoring, our study adds a novel aspect to the field by combining 
acoustic denoising and features with deep learning for defect classifi-
cation in the LDED process. 

To this end, this paper proposes a novel in-situ defect detection 
strategy in LDED using a microphone with deep learning. The key 
novelty of this work is to develop an in-situ acoustic signal denoising, 
feature extraction, and laser-material interaction sound classification 
pipeline that incorporates cutting-edge convolutional neural networks 
(CNN). To enable in-situ monitoring, a Robot Operating System (ROS)- 
based software platform is developed, which executes the acoustic signal 
processing and deep learning pipeline and predicts the defect occur-
rences on-the-fly. An acoustic denoising technique is used to clean the 
raw acoustic data, which includes noises from machine moving, pro-
tective gas flow, and powder flow. Following that, key acoustic signa-
tures are extracted in time-domain, frequency-domain and time- 
frequency representations. Using the Mel-Frequency Cepstral Co-
efficients (MFCCs) features of the laser-material interaction sound, the 
CNN model is trained to differentiate sound from defect-free regimes, 
crack and keyhole pore regimes. The CNN model is compared to a 
number of classic machine learning (ML) models trained on denoised 
and raw acoustic datasets. The validation results show that the CNN 
model trained on the denoised dataset outperforms others with the 
highest overall accuracy (89%), keyhole pore prediction accuracy (93%) 
and ROC-AUC score (98%). The proposed strategy is the first study to 
use acoustic signals with deep learning for in-situ defect detection in 
LDED process, which can identify location-specific defects including 
cracks and keyhole pores. 

The rest of the paper is structured as follows. Section 2 provides an 

overview of the proposed framework for in-situ defect detection using 
deep learning. Section 3 illustrates the experimental procedures, dataset 
preparations, software architectures, as well as the proposed acoustic 
signal denoising technique, extraction of key acoustic features, and 
training details for the CNN and ML models for defect classification. The 
results of the model’s performance evaluation and validation are dis-
cussed in Section 4. Lastly, Section 5 concludes by summarizing the key 
findings of the research and proposing further work on in-situ acoustic 
monitoring for the LDED process. 

2. Deep learning-assisted acoustic-based in-situ defect detection 
framework 

Fig. 1 illustrates an overview of the proposed acoustic-based in-situ 
defect detection framework, which consists of an in-situ acoustic 
denoising, feature extraction, and laser-material interaction sound 
classification pipeline. Firstly, a signal denoising technique is applied to 
clean the noisy LDED sound. Section 3.3 provides details of acoustic 
signal denoising and its results. Following that, key acoustic signatures 
in the time-domain, frequency-domain, and time-frequency represen-
tations (Cepstral-domain) are extracted from the denoised acoustic 
signal. Feature correlations and their connections with LDED defects are 
quantitively investigated and discussed in Section 3.4. Subsequently, a 
CNN model and various traditional ML models are trained to classify the 
LDED sound into three categories, including defect-free, cracks, and 
keyhole pores. The CNN model fed on MFCCs features yielded the best 
performance (overall accuracy of ~89%) among all models, which was 
incorporated into the software for online defect detection. Section 3 
describes the details about system setups, experimental procedures, 
dataset descriptions and each steps in the proposed defect detection 
framework. 

3. Methodology 

3.1. Experimental procedures and raw acoustic datasets 

Fig. 2 depicts the robotic LDED in-situ acoustic monitoring system 
used in this study. The system is equipped with a six-axis industrial robot 
(KUKA KR90) and a two-axis positioner. A laser head and a coaxial 
powder feeding nozzle are attached to the robot arm’s end-effector. The 
LDED process sounds were recorded using a Prepolarized microphone 
sensor (Xiris WeldMIC) with a frequency response ranging from 50 to 
20,000 Hz. The Prepolarized microphone sensor in this study does not 
require any external power supplies or preamplifiers. The microphone 
can be directly connected to the laptop for audio signal processing. The 
microphone is placed next to the laser head (approximately 10 cm from 
the molten pool) at an angle around 30 degrees, with 44,100 Hz sam-
pling rate to satisfy Shannon Nyquist theorem [44] (where the analogue 
signal can be converted to digital and back to analogue without any 
significant loss of information). 

In the powder-blown LDED process, defect occurrences are difficult 
to forecast because of the dynamic and stochastic nature of the melt pool 

Fig. 2. In-situ acoustic monitoring setup for the robotic LDED system.  
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metallurgical process [45]. Transitions from conduction mode (e.g., 
non-defective mode) to abnormal states like keyhole mode melting re-
gimes are particularly difficult to determine [46]. In most circum-
stances, the trial-and-error approach [47] or mechanistic modelling 
approach [48] is used to obtain optimal process parameters for 

producing dense and defect-free parts. However, variations in part 
quality are still seen even when the optimal process parameters are 
applied. The substrate temperature rises as the process continues, 
resulting in nonuniform tracks, an extended heat-affected zone, exces-
sive dilution, geometric distortion, and cracking due to residual stress 
build-up. Furthermore, unstable melt pool dynamics and high energy 
density may result in material evaporation, which creates keyhole pores. 
Keyhole pores and cracks are the most severe defects in LDED, which 
directly degrades mechanical performance, such as strength, micro-
hardness, and fatigue life [49,50]. 

In this study, we produced a number of single bead wall structures 
with varying process parameters using commercial Maraging Steel C300 
powder material to create an AM acoustic dataset, as shown in Tables 1 
and 2. Unlike most existing sensor-based defect detection research, we 
do not deliberately use suboptimal process settings to create defects. 
Instead, we employ pre-optimized process parameters to deposit mate-
rials from start to finish, allowing us to see the transition from the defect- 
free to the defective regime. The process parameters were optimized 
through trial-and-error experiments with depositing block samples. The 

Table 1 
LDED experiments for acoustic data collection.  

Experiment Laser power, P 
(kW) 

Speed, v (mm/ 
s) 

Dwell time 
(s) 

Powder flow rate, f (g/ 
min) 

Energy density, P/v (kW⋅s 
/mm) 

Line mass, f/v (g/ 
mm) 

Types of defects 
generated 

#1  2.3  25  0  12  0.092  0.480 cracks, keyhole pores 
#2  2.53  27.5  0  12  0.092  0.436 cracks, keyhole pores 
#3  2.3  25  5  12  0.092  0.480 cracks, keyhole pores 
#4  2.3  25  10  12  0.092  0.480 cracks, keyhole pores 
#5  2.53  27.5  5  12  0.092  0.436 cracks, keyhole pores 
#6  2.53  27.5  5  12  0.092  0.436 cracks, keyhole pores  

Table 2 
Other LDED process settings during the experiments.  

Parameters Values 

Geometry 
Dimension 
Number of layers for each sample 

Single bead wall structure 
90 mm * 42.5 mm 
50 

Laser beam diameter 2 mm 
Layer thickness 0.85 mm 
Stand-off distance 12 mm 
Laser profile Gaussian 
Laser wavelength 1064 nm 
Material Maraging Steel C300  

Fig. 3. LDED audio dataset preparations and descriptions. (a) An OM image of the single bead wall sample produced for acoustic data collection (Image taken from x- 
z outer surface of Experiment #1 in Table 1. (b) Distribution of the AM audio dataset per category, where acoustic signals from each category were segmented into 
500 ms pieces. (c)-(e) Visualization of a 4-second-long acoustic signal piece (one layer) from each category. 
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original optimized print parameters were used for Experiment #1, as 
shown in Table 1. When printing the single bead wall samples for 
acoustic data collection, we kept the energy density (P/v) constant while 
adjusting the laser power and scanning speed proportionally. The dwell 
time between each layer was varied in different experiments to postpone 
the occurrence of defects since it can reduce localized heat accumula-
tion. As a result, defects appeared in different layers for different sam-
ples. The sample fabricated with a longer dwell period contained fewer 
flaws. Cracks and keyhole pores emerged at a higher layer in samples 
fabricated with longer dwell time. For each sample, optical microscope 
(OM) images were taken to identify locations of cracks and keyhole 
pores within the part. Fig. 3(a) shows the OM image (x-z outer surface) 
of a single bead wall sample produced for acoustic data collection. The 
wire-cutting process removes the outer surface of the single bead wall, 
allowing us to observe the location-specific quality. As shown in Fig. 3 
(a), the process transitions from the defect-free regime to the crack 
regime after several layers of deposition due to heat build-up. As the 
process progresses, significant heat accumulation causes material 
evaporation and gas entrapment in the molten pool to form keyhole 
pores in the sample’s upper layers. The acoustic signal was segmented to 
500 ms pieces and spatiotemporally registered with defect locations for 
data labelling. During the experiments, the acoustic signal was recorded 
simultaneously and synchronously with the robot tool-centre-point 
(TCP) position data through the in-house developed ROS software. If 
cracks or keyhole pores occurred at a specific location (as observed from 
the OM image), the 500 ms acoustic signal segment corresponding to 
that location was marked as "cracks/keyhole pores". This process 
enabled us to create a labelled dataset for training the defect detection 
model. 

The total acoustic dataset consists of 1300 signal samples segmented 
at 500 ms length from three categories: defect-free, cracks and keyhole 
pores (Fig. 3(b)). The acoustic signal before and after each step of 
denoising were also collected, which were used to validate the effec-
tiveness of the proposed denoising approach. Fig. 3(c)-(d) displays LDED 
sounds after denoising from each category. The keyhole pore has the 
largest magnitude, and cracks have a distinct amplitude envelope, 
whereas the defect-free regime has a more stable and smaller amplitude. 

3.2. Software architecture for acoustic-based defect detection 

The in-house designed software is deployed on a personal computer 
(PC) running Linux (Ubuntu 20.04LS) that works as the central 
controller for acoustic-based defect identification. The in-situ acoustic 
monitoring software adopts similar multi-nodal philosophy as the one 
reported in [51] and [24], where Robot Operating System (ROS) 
open-source framework [52] is used to establish the communications 

among the sensor, robot, and PC. Fig. 4 shows the proposed software 
architecture, consisting of ROS nodes for raw acoustic signal capturing, 
denoising, feature extraction, ML/DL models for defect prediction, and 
online feature data visualization. The ROS nodes runs simultaneously 
and data is exchanged over topics channels. "Subscribe" and "Publish" 
describe the communication mechanism between ROS nodes. "Sub-
scribe" refers to a node receiving data from another node through a topic 
channel. "Publish" refers to a node sending data to other nodes by 
publishing it to a topic. Nodes can both subscribe to and publish multiple 
topics, enabling flexible communication within the robotic system. The 
use of publish/subscribe messaging model can be found in many 
event-driven systems and Internet of Things (IoT) platforms, including 
Message Queuing Telemetry Transport (MQTT) [53], Data Distribution 
Service (DDS) [54], and Apache Kafka [55], where devices can both 
publish and subscribe to topics to exchange information. Therefore, 
platforms other than ROS can employ the same software architecture 
represented in Fig. 4. The details of the software architectures are 
illustrated below.  

• "Microphone sensor capturing node" extracts raw acoustic signal 
with time stamps and publishes it as a ROS topic. The raw acoustic 
data is captured at 44100 Hz and stored in a buffer. ROS publishes 
the time-stamped signal at a frequency of 30 Hz.  

• "Acoustic signal denoising node" subscribes to the raw acoustic data 
and conducts the denoising algorithms (i.e., equalization, bandpass 
filtering, and Harmonic-Percussive Source Separation (HPSS) [56]). 
It publishes the time-stamped denoised signal as a ROS topic at a 
frequency of 30 Hz. Raw signal and the denoised signal can both be 
subscribed for offline data analysis  

• "In-situ feature extraction node" subscribes to the denoised data and 
extracts key features such as amplitude envelop (AE), spectral de-
scriptors and MFCCs. The acoustic feature extraction was imple-
mented using nussl [57] and librosa [58] library.  

• The ML models (e.g., KNN, SVM, gradient boosting, etc.) and MFCC- 
CNN model were loaded in a ROS node that subscribes to the 
extracted features and stores them into a buffer. The models can 
make an inference and publish the predicted defect as a ROS topic 
each 500 ms.  

• All the features can be visualized online via the PlotJuggler plugin 
[59]. 

The proposed in-situ defect detection strategy can predict the 
occurrence of defects while the machine is in operation, as opposed to 
relying on ex-situ quality inspection. The ML model publishes its pre-
dictions to a ROS topic every 500 ms for each segment of the acoustic 
signal. This feedback signal represents the current quality and can be 

Fig. 4. In-house developed ROS-based software architecture for in-situ monitoring and defect prediction for the LDED process through a microphone sensor.  
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used for closed-loop process adjustment. The software can issue warn-
ings when the defects are detected, and the process can be stopped 
immediately to prevent further quality deterioration. Alternatively, the 
laser power can be reduced when defects are detected, minimizing the 
localized heat accumulation. 

3.3. Acoustic signal denoising 

The LDED process’s raw acoustic signal incorporates noise from 
several sources, including machine motion, powder flow, and protective 
gas flow. Fig. 5 depicts the Fast Fourier Transform (FFT) [60] for various 
sound sources during the LDED process in different scales. The magni-
tude is depicted in linear scale in Fig. 5(a). The magnitude is depicted in 

Fig. 5. Plots of the Fast Fourier Transform (FFT) for various acoustic signal sources throughout the LDED process: (a) frequency in logarithmic scale, magnitude in 
linear scale; (b) magnitude in logarithmic scale, frequency in linear scale. 

Fig. 6. Each step of acoustic signal denoising is represented by a Fast Fourier Transform (FFT) plot: (a) frequency in logarithmic scale, magnitude in linear scale; (b) 
frequency in linear scale, magnitude in logarithmic scale. 
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logarithmic scale "decibels (dB)" in Fig. 5(b). In this scenario, the decibel 
values are logarithmic of the magnitudes of the normalized audio data 
samples, allowing us to examine and analyse the structure and content of 
the audio signal more easily. Fig. 5(a) and (b) compare the FFT fre-
quencies in logarithmic and linear scales, respectively. The FFT plots in 
Fig. 5(a) reveal signal content in the low frequency band (<1000 Hz), 
whereas the FFT plots in Fig. 5(b) reveal more information about the 
audio signal content above 1000 Hz. Furthermore, each sound compo-
nent was captured separately, with no other source active. The LDED 
sound in frequency range 0–1000 Hz overlaps the most with the noise 
content ("Machine + Ar gas + Powder flow"), whereas the amplitude of 
LDED sound in high-frequency bands above 10 kHz is obviously higher 
than the individual noise content. As a result, the signal of interest is the 
signal in high frequency bands, where LDED laser material interaction 
sound dominates. In addition, machine sound evidently contributes the 

most to the low-frequency bands noise, whereas other sound sources 
have relatively little influence on the total audio output. Nevertheless, 
since all sound sources make a contribution to energy across the entire 
frequency bands, acoustic signal separation is challenging. A LDED 
sound source separation technique was proposed in order to isolate the 
signal of interest from the noisy surroundings in our previous study [61], 
which are briefly illustrated as follows. 

The raw signals were first modified using acoustic equalization 
technique [62], which changes the magnitude of different frequency 
bands. The transfer function Heq(z) of a parallel acoustic equalization 
can be written as: 

Heq(z) =
∑M

m
GmHm (1) 

Fig. 7. Visualization of acoustic signal denoising steps. (a) Comparison of the raw acoustic signal and the final denoised signal from one experiment, corresponding 
to the microscope image shown in Fig. 3(a). The process transitions from the defect-free regime to the crack and then to the keyhole pore regime. (b)-(e) Visualization 
of the acoustic signal after each denoising step. The selected piece of sound belongs to the crack regime. 

L. Chen et al.                                                                                                                                                                                                                                    



Additive Manufacturing 69 (2023) 103547

8

where Hm denotes the transfer function of different frequency band, and 
Gm denotes the signal gains that regulate the amplitude of each band-
width. To reduce the noise component and increase the volume of the 
sound generated by laser-metal processing, the gain in the equalizer is 
manually tuned. The volume of frequency spanning from 1000 Hz to 
20,000 Hz were enhanced, while the volume of the frequency outside 
this region, where machine noise prevails, were muted. Subsequently, to 
eliminate high and low-frequency noise, a bandpass filter is utilized. The 
bandpass filter allows frequencies between 1000 and 21,000 Hz to pass 
through while attenuates frequencies outside the passband. Bandpass 
filtering was conducted using Python SciPy library with the filter order 
set to 3. Finally, the Harmonic-Percussive Source Separation (HPSS) 
[56] technique is used to extract the percussive component of in the 
LDED sound. 

Fig. 6 shows the FFT plots for each stage of the three-step acoustic 
signal denoising approach. The acoustic equalizer reduced low- 
frequency noise while increasing amplitude from 1000 to 20k Hz. The 
laser-material interaction sound was magnified by raising the volume of 
the signal of interest and decreasing the volume of the noise-dominant 
region. Following that, the bandpass filter attenuates frequencies 
outside the passband from 1000 Hz to 21,000 Hz. In the last step, the 
HPSS algorithm retrieved the percussive sound elements of the audio 
signals. As a consequence, the majority of the environment noise were 

eliminated or greatly reduced. 
The effectiveness of the proposed signal denoising technique is 

shown in Fig. 7. Fig. 7(a) compares the raw signal and the final denoised 
acoustic signal from Experiment #1 (corresponding to the microscope 
image shown in Fig. 3(a)), where the process moves from defect-free 
regime to crack regime and subsequently to keyhole pore regime. The 
denoised signal has a more noticeable amplitude envelope. The laser on 
and off intervals are observable in the plot. An acoustic signal segment 
from the crack regime was utilized to demonstrate the effectiveness of 
each denoising step, as shown in Fig. 7(b)-(e). The amplitude envelope 
of the crack sound is difficult to discern from the raw signal. Following 
equalization, the signal of interest between 1000 Hz and 20 kHz was 
amplified, while noise was reduced. The bandpass filtering eliminates 
any leftover noise, while the final HPSS stage captures the crack sound 
clearly, as shown in Fig. 7(e). 

3.4. Acoustic feature extraction 

In this section, key acoustic features in time-domain, frequency- 
domain and time-frequency representations are analysed. The correla-
tion between acoustic features and the output class (i.e., defect-free, 
cracks, keyhole pores) is quantitatively investigated. Spearman’s 
formulation [63] was used to compute the correlation (rij) between the 
acoustic features and the categorical labels: 

rij = 1 −
6
∑

dij
2

n(n2 − 1)
(2)  

where dij represents the distance between the rankings of the ith and jth 

feature variables, and n denotes the total number of data points. rij runs 
from − 1 (denoting the strongest negative correlation) to 1 (indicating 
the strongest positive correlation), with 0 denoting no correlation. The 
complete feature correlation matrix is shown in Appendix A. Fig. A1. 
Each feature is discussed as follows. 

3.4.1. Time-domain features 
Table 3 summarizes the time-domain acoustic features, their math-

ematical definitions and descriptions. Before extracting the time-domain 
features, the windowing parameters in the librosa audio signal pro-
cessing library [58] must be specified, with the frame size set to 512 and 
the hop length set to 256. Windowing [64] is the method of analysing a 
long audio signal into small pieces of the quasi-stationary signal using a 
sliding window over time. Three time-domain features were extracted, 
and the mean and variances of these features were calculated for each 
audio data segment.  

• Amplitude envelope (AE) is constituted of the frame’s maximum 
amplitude value. The AE feature can indicate how acoustic energy 
fluctuates over time and reflects the magnitudes variations directly. 

Table 3 
List of time-domain acoustic features and mathematical definitions.  

Feature 
name 

Mathematical expression Description Ref 

Amplitude 
Envelope 
(AE) 

AEt = max(s(k)[t⋅K, (t+1)⋅K − 1])
1. AEt: AE at kth frame t  
2. s(k): amplitude of sample  
3. K: number of samples in a frame 

A boundary 
curve that 
traces the 
signal’s 
amplitude 
through time, 
capturing how 
energy in the 
signal 
changes. 

[66] 

Root-mean- 
square 
energy 
(RMS) 

RMSt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
K

⋅
∑(t+1)⋅K− 1

k=t⋅K
s(k)2

√ RMS of all 
samples in a 
frame: 
indication of 
loudness 

[67] 

Zero 
crossing 
rate 
(ZCR) 

ZCRt =

1
2

⋅
∑(t+1)⋅K− 1

k=t⋅K

⃒
⃒sgn(s(k)) − sgn(s(k+1))

⃒
⃒sgn: 

sign of function (+1, − 1, or 0) 

A signal’s 
frequency 
crosses the 
time axis: 
recognition of 
percussive vs 
pitched 
sounds 

[65]  

Fig. 8. Fast Fourier Transform (FFT) plots of the LDED sound from different categories (i.e., defect-free, cracks, and keyhole pores). (a) FFT plot in linear scale, (b) 
FFT plot in log magnitude scale. 
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The AE mean and variance exhibit a positive correlation to the 
output class, as shown in Fig. A1, indicating that keyhole pore sound 
has larger and much more unstable AE values than cracks and defect- 
free sound.  

• Root-mean-square energy (RMSE) is computed by RMS of all samples 
in a frame. RMSE, like AE but less sensitive to outlier disruptions, can 
represent the magnitude and fluctuations of sound across time. 
RMSE mean and variance also show a positive correlation to the 
defects, as indicated in Fig. A1.  

• The frequency at which the sign of a signal changes is referred to as 
the zero crossing rate (ZCR). Its use has been extensively recognized 
in voice recognition and music information retrieval, where it is an 
important factor in identifying percussive sounds. [65]. As 
mentioned in Section 3.3, the LDED process sound was found to be 
related to the percussive components in the acoustic signal; hence, 
ZCR potentially correlates to the amount of material melting during 
the process. Fig. A1 shows that the ZCR mean value has a negative 
correlation with defects, with a higher ZCR value corresponding to 
fewer defects and more stable melting conditions. 

3.4.2. Frequency-domain features 
Fig. 8 depicts the FFT plots of the denoised acoustic signal from three 

different categories (i.e., defect-free, cracks, and keyhole pores). The 
magnitude of keyhole pore sound is considerably larger in the low fre-
quency bands (0–5000 Hz), followed by crack sound and defect-free 
sound. The magnitude of defect-free sound is higher at frequencies 
ranging from 5000 to 10000 Hz, whereas crack and keyhole pore 
magnitudes are similar in this frequency range. The distinct patterns in 
the FFT plots demonstrate the feasibility of extracting various spectral 
descriptors for the following sound classification task. Table 4 summa-
rizes the frequency-domain acoustic features, their mathematical 

definitions and descriptions. Each frequency-domain feature is discussed 
as follows.  

• The spectral centroid (SC) is the centre of gravity (COG) of the 
magnitude spectrum, which is determined by calculating the 
weighted mean of all frequencies. Fig. A1 shows SC mean value is 
negatively correlated to defects.  

• The spectral bandwidth (SBW) (also known as a spectral spread or 
dispersion) determines the magnitude spectrum variation from the 
SC. Fig. A1 shows that SBW variation has a clear positive relationship 
with defects, with keyhole pores resulting in larger variations in 
SBW. Since SBW can indicate a tone’s dominance (e.g., the band-
width increases as the tones diverge (noise-like) and decreases as the 
tones converge (rhythms-like)) [68], the finding implies that 
defect-free sound is more uniform and energy-concentrated, whereas 
defect sound is more noise-like signal.  

• Spectral roll-off (Rolloff) measures the frequency point under which 
a given percentage (85%) of the total energy exists, and it is often 
used in music genre classification [69]. As shown in Fig. A1, the 
Rolloff value is also negatively correlated to defects’ existence, while 
the variation of Rolloff is positively correlated to defect.  

• Spectral flatness (SF) computes the geometric mean to the arithmetic 
mean of the power spectrum, which quantifies the frequency distri-
bution’s homogeneity. Fig. A1 demonstrates that SF negatively cor-
relates to defects.  

• Band energy ratio (BER) is defined as the power in low frequency 
band divided by power in high frequency band. As seen in the pre-
vious FFT plots in Fig. 8, defects have larger magnitudes in low 
frequency bands and lower magnitudes in high frequency bands. As a 
result, the findings in Fig. A1 reveal a positive relationship between 
BER and defects. 

Table 4 
List of frequency-domain acoustic features and corresponding mathematical definitions.  

Feature name Mathematical expression Description and remarks Reference 

Spectral centroid 
(SC) SCt =

∑N
n=1mt(n)⋅n

∑N
n=1mt(n)

Weighted mean of the frequencies. n represents frequency bands, mt(n) is the spectral value (magnitude) for 
n. N is the range of the frequency bands. 

[70] 

Spectral bandwidth 
(SBW) SBWt =

∑N
n=1 |n − SCt |⋅mt(n)
∑N

n=1mt(n)

Weighted average of frequency band distances from SC (spread of energy). 
[70] 

Spectral roll off (SR) SRt = is.t.
∑i

n=1|mt(n) | =

η
∑N

n=1|mt(n)|

The central frequency where a particular proportion (85 %) of the total energy resides. η is the energy 
threshold (85 %). [71] 

Spectral flatness 
(SF) 

SFt =

(
∏N

n=1
mt(n))

1
n

1
n
∑N

n=1
mt(n)

The geometric mean divided by the arithmetic mean of the spectra: determine how much of a sound is 
noise-like versus tone-like. [72] 

Band energy ratio 
(BER) BERt =

∑F− 1
n=1mt(n)

2

∑N
n=Fmt(n)

2 

The power in the low frequency band divided by the power in the high frequency band, where F represents 
split frequency, which was set to 7000 Hz. [73] 

Spectral contrast 
(Contrast) Contrastt =

∑

peak
mt(n)

2

∑

valley
mt(n)2 

Taking the mean energy in the top quantile and comparing it to the mean energy in the lowest quantile. 
High contrast levels are often associated with clear, narrowband signals, and low contrast values are 
associated with broad-band noise. 

[73] 

Spectral variance 
(µ2) µ2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
n=1(n − SCt)

2mt(n)
∑N

n=1mt(n)

√ The standard deviation in the vicinity of the spectral centroid. 
[74] 

Spectral skewness 
(µ3) µ3 =

∑N
n=1(n − SCt)

3mt(n)

(µ2)
3 ∑N

n=1mt(n)

The third-order moment of spectrum, measuring the symmetry around the centroid. 
[74] 

Spectral kurtosis 
(µ4) µ4 =

∑N
n=1(n − SCt)

4mt(n)

(µ2)
4 ∑N

n=1mt(n)

The fourth-order moment of spectrum. 
[74] 

Spectral crest 
(Crest) Crest =

max(mt(n) [1,N])

1
N

∑N
n=1

mt(n)

The proportion of the spectrum’s maximum to its arithmetic mean. 
[74] 

Spectral entropy 
(H) Ht =

−
∑N

n=1mt(n)⋅log(mt(n))
log(N)

Measures the peakiness of the spectrum. 
[75] 

Spectral flux (Flux) 

Fluxt =

(
∑N

n=1
⃒
⃒mt(n) − mt− 1(n)

⃒
⃒p
)

1
p  

Measures variability of spectrum over time, popular in audio segmentation. p is the norm type. p = 2 is 
chosen for L2-norm in this research. [76]  
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• Spectral variance, skewness and kurtosis are the second, third and 
fourth moments of the spectrum, respectively. These statistical fea-
tures reflect various magnitude spectrum properties in the frequency 
domain, which are often employed in music genre categorization and 
speech recognition [64]. Fig. A1 shows that the mean value of 
variance, skewness and kurtosis all have a negative correlation with 
the defect existence.  

• The spectral crest factor expresses how peaky the spectrum is. It is 
greater for harmonic sounds and lower for noisy sounds. As shown in 
Fig. A1, it follows the same conclusion as in SBW and SF, where a 
lower value corresponds to defect sound, which is more of a noise- 
like signal. 

• Spectral entropy is the measure of peakiness and uniformity of en-
ergy distribution. As shown in Fig. A1, it has a negative correlation 
with the defects. Spectral flux is the measure of L-2 norm of the 
spectrum over time, and it is positively correlated to defects. 

3.4.3. Time-frequency representations (cepstrum feature) 
The preceding investigations solely retrieved acoustic signatures in 

the time and frequency domains. Time-frequency representations [77] 
are often more effective approaches for audio signal processing, as the 
relative energy densities in different frequency bands can be computed. 
This enables the expression of acoustic signatures in both frequency and 

time. Common time-frequency representations include spectrogram 
computed by short-time Fourier transform (STFT) [78], scalogram 
computed by wavelet transforms (WT) [79], and the cepstrum domain 
features [80]. In this study, Mel-frequency cepstrum coefficients 
(MFCCs) [81] from the cepstrum domain were chosen. MFCCs is a 
common choice for real-time speech recognition applications. The key 
advantages of MFCCs are their computational efficiency and ability to 
capture perceptual features. Compared to STFT and WT, MFCC involves 
fewer computations, making it significantly faster for audio feature 
extraction tasks. In addition, MFCC can mimic the perceptual sensitivity 
of the human ear by applying a non-linear transformation of the fre-
quency scale, which approximates the human auditory system’s 
response more closely than the linearly-spaced frequency bands used in 
the normal spectrum, such as WT and STFT. In our study, MFCCs was 
chosen as the time-frequency representations because our application 
was motivated by the fact that a skilled welder may identify defects by 
listening to the welding sound. AI that has learned from the MFCCs 
features can therefore achieve human-like performance. Furthermore, 
software programs for in-situ quality monitoring must be computa-
tionally efficient. 

MFCCs are determined by taking the inverse Fourier transform of a 
logarithm of the signal’s spectra, which can be represented as follows: 

C(x(t)) = F− 1[log(F[x(t)]) ] (3)  

where function C(x(t)) computes the cepstrum of a signal x(t). F repre-
sents the Fourier transform function, and F− 1 is inverse Fourier trans-
form. Fig. 9 illustrates a flowchart for practically implementing MFCCs 
in Python, where the Discrete Cosine Transform is used to reduce the 
dimensionality for representing the spectrum. Fig. 10 shows the results 
of MFCCs values for a 4-second segment of the denoised acoustic signal 
from each category (i.e., defect-free, cracks, and keyhole pores). All 
MFCC values are normalized to a range of − 1 to 1. As can be seen, 
MFCCs is a powerful feature capable of distinguishing the LDED sound 
from different processing regimes. In the defect-free deposition process, 
the MFCCs value in low-frequency bands is lower. The brighter colour 
(value near 1) in cracks and keyhole pores indicates a larger concen-
tration of energy in the low-frequency bands. Due to the fact that 
cracking is an energy-releasing process, sound waves can readily 
distinguish such abnormal phenomena by showing unique patterns that 
reflect the abrupt increase in acoustic energy induced by crack 
propagation. 

3.4.4. Acoustic feature analysis 
Finding relationships between acoustic features before putting them 

into ML models for defect classification tasks can assist selection of ML 
model complexity. A feature importance analysis is conducted to 
determine which features are most important in distinguishing the 

Fig. 9. Mel-Frequency Cepstral Coefficients (MFCCs) extraction procedure.  

Fig. 10. Visualization of MFCCs features from each category.  
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process regimes (i.e., defect-free, cracks, and keyhole pores). Fig. 11(a) 
depicts the results of a random forest feature importance analysis. The 
most important features of LDED sound are BER, spectral centroid, en-
tropy, bandwidth, flatness, Rolloff, and variance. However, it is evident 
that all of the features have a low importance level (with the highest one 

only slightly larger than 0.12). This is because the formation of defects is 
a highly complex process. None of the individual characteristics could 
adequately characterize the acoustic signal. Spearman’s correlation 
matrix of the most important acoustic features from the denoised signal 
is plotted in Fig. 11(b). Furthermore, to visualize the high-dimensional 

Fig. 11. Acoustic feature analysis. (a) Random forest feature importance of the denoised acoustic signal. (b) Correlation matrix heatmap of key acoustic features and 
output class (i.e., defect-free, cracks, and keyhole pores). (c) Low-dimensional feature visualization by PCA projection of raw acoustic signal features. (d) Low- 
dimensional feature visualization by PCA projection of denoised acoustic signal features. 

Fig. 12. The architecture of the Mel-Frequency Cepstral Coefficients-based Convolutional Neural Network (MFCC-CNN).  
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acoustic data, we used principal component analysis (PCA) to conduct 
dimensionality reduction. Fig. 11 (c) and (d) show the PCA projection of 
the raw acoustic signal features and the denoised acoustic signal fea-
tures, respectively. The results show that denoised acoustic features can 
form different clusters in low dimensional space, while the raw signal is 
much more difficult to distinguish. 

3.5. Defect prediction models 

3.5.1. MFCC-CNN 
A convolutional neural network (CNN) was developed and imple-

mented using the TensorFlow [82] Python Deep learning framework. 
The CNN model uses MFCCs as input features, as shown in Fig. 12. 
Therefore, it is termed MFCC-CNN. The proposed MFCC-CNN consists of 
three convolutional layers, a flattened layer, a fully-connected layer and 
a SoftMax layer. The MFCC-CNN takes the MFCCs values extracted from 
each segment of the acoustic signal as input, with cepstrum domain 
features expressed in 20 frequency bands. Prior to being fed into the 
model, the input features were normalized to have a zero mean and unit 
variance. For the convolutional layers, the 2D convolution is followed by 
a ReLU [83] activation function, subsequently, a max-pooling layer. 
Each max-pooling operation reduces the spatial dimensions of the 2D 
convolutional layer, and the respective dimensions are shown in Fig. 12. 
The output layer is a SoftMax [84] function which predicts the proba-
bility distribution of three output classes (i.e., defect-free, cracks, and 
keyhole pores). A list of MFCC-CNN model hyperparameters is shown in  
Table 5. The hyperparameters were optimized by using the k-fold 
cross-validation grid search method. Adam Optimizer [85] was selected 
as the optimization solver, which trains the model through minimizing 
the cross-entropy loss between ground-truths and model predictions 
[86]. The training was conducted using NVIDIA GeForce RTX 3070 GPU 
with Keras & TensorFlow Python DL framework. The model perfor-
mance evaluation will be discussed in Section 4. 

3.5.2. Traditional ML models 
In this research, we compared the proposed MFCC-CNN model with 

eight traditional supervised learning algorithms: Naive Bayes (NB), 
Random Forest (RF), AdaBoost (AB), Decision Tree (DT), Support Vector 
Machine (SVM), Logistic regression (LR), Gradient Boosting (GB), and K- 
Nearest Neighbours (KNN). The Scikit-learn Python package [87] was 
used to implement the ML algorithms for training and testing. The 
traditional ML algorithms classify LDED sound using the time- and 
frequency-domain features described in Section 3.4. The input features 
were selected based on the analysis in Section 3.4.4, including 
"S-bandwidth mean", "S-entropy mean", "BER mean", "BER var", 
"S-centroid var", "ZCR var", "ZCR mean", "S-flux var", "S-centroid mean", 

"S-variance mean". 
To optimize hyperparameters for ML models, a grid search approach 

is utilized, which is an exhaustive search strategy that evaluates all 
feasible hyperparameter value combinations. Each iteration of the 
hyperparameter tuning procedure was evaluated using k-fold cross- 
validation (k = 5). The k-fold cross-validation procedure is repeated 
for each k-fold. The hyperparameter combination with the best cross- 
validation result is picked at the end of the grid search. The optimal 
hyperparameter results for the traditional ML models are listed in  
Table 6. 

4. Results and discussions 

To validate the effectiveness of the proposed denoising technique, 
the MFCC-CNN and traditional ML models were trained on acoustic 
signals from different denoising stages. Each denoising step’s acoustic 
signal (raw signal, equalized signal, bandpassed signal, and final 
denoised signal) was separated into a training set and a testing set for 
assessing model performance. The ratio of train to test is 8:2. The size of 
the training dataset is 1080 samples. Since the quantity of data points in 
each category varies (as shown in Fig. 3(b)), the "Stratified Shuffle Split" 
method in Scikit-Learn was used to create the train and test sets while 
maintaining the percentage of samples in each class. 

The testing accuracy curves for MFCC-CNN trained on the raw 
acoustic dataset and denoised acoustic dataset are shown in Fig. 13 (a) 
and (b), respectively. The MFCC-CNN trained on the denoised dataset 
achieves faster convergence and higher testing accuracy, confirming the 
effectiveness of the proposed acoustic denoising approach. The detailed 
comparisons are presented and discussed below. 

The proposed MFCC-CNN model and the eight traditional ML algo-
rithms are evaluated in terms of overall classification accuracy, Aera 
Under Curve of Receiver Operating Characteristics (AUC-ROC) scores, 
false positive rate (i.e., percentage of actual defects misclassified as 
‘defect-free’ category), and the keyhole pore prediction accuracy. To 
demonstrate its viability and repeatability, all of the ML model evalua-
tions reported in this paper were averaged over five runs, with standard 
deviations marked as error bars. 

The overall accuracy is the number of correct predictions divided by 

Table 5 
MFCC-CNN hyperparameter tuning information.  

Training hyperparameter Optimal 
values 

Range studied 

Solver name 
Learning rate 

Adam 
optimizer 
0.0001 

[’Adam’, ’SGD’] 
[1e–2, 1e–3, 1e–4] 

L2 regularization factor 0.1 [0.01, 0.05, 0.1, 0.15] 
Activation function ReLU [’ReLU’, ’Sigmoid’] 
Batch normalization True [’True’, ’False’] 
Kernel size in convolutional layer 1–3 [2,3] [[2,3,5], [2,3,5], [2,3,5]] 
Number of filters (channels) in 

convolutional layer 1–3 
[16, 16, 32] [[16,32], [16, 32, 64], 

[32, 64, 128]] 
Stride in convolutional layer 1–3 [1,1,1] [[1,2], [1,2], [1,2]] 
Padding ‘same’ [‘same’, ‘zero’] 
Number of neurons in the FC5 256 [64, 128, 256] 
Dropout – conv3 0.2 [0.1–0.5] 
Dropout – FC4 0.5 [0.1–0.5] 
Dropout – FC5 0.2 [0.1–0.5] 
Hop length 256 [128, 256, 512] 
Frame size 512 [128, 256, 512, 1024]  

Table 6 
Hyperparameter optimization results of the traditional ML algorithms.  

Classifiers Hyperparameters Optimal values Range studied 

NB Variance smoothing 1e-9 [1e-10, 1e-9, 1e-8] 
RF Minimum split 

Number of estimators 
Splitting algorithm 
Maximum depth 

3 
10 
Gini impurity 
4 

[2–6][2–10][’Gini’, 
’entropy’] 
[2–6] 

AdaBoost Number of estimators 
Algorithm 

10 
SAMME 

[1–10][’SAMME’, 
’SAMME.R′] 

KNN Neighbours 
Weight function in 
prediction 
Computation of 
nearest neighbours 

4 
Distance 
Ball Tree 

[3–9][’uniform’, 
’distance’] 
[’auto’, ’ball tree’, 
’kd_tree’] 

LR solver 
Penalty 

‘lbfgs’ 
L2 regularization 

[‘lbfgs’, ‘liblinear’, 
‘newton-cg’] 
[‘l1′, ‘l2′, ‘elasticnet’] 

SVM Kernel type 
Regularization 
parameter (C) 
Kernel coefficient (γ) 

Radial basis 
function 
1000 
0.001 

[‘linear’, ‘poly’, ‘rbf’, 
‘sigmoid’] 
[1, 10, 100, 1000, 
1500, 2000] 
[1e-2, 1e-3, 1e-4] 

DT Minimum samples 
required to split 
Measurement the 
quality of split 
Maximum depth 

3 
Gini 
6 

[1–10][’Gini’, 
’entropy’] 
[1–30] 

GB Number of 
estimators 

10 [1, 5, 10, 20, 50, 100]  
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Fig. 13. Loss and accuracy curves showing CNN models trained on (a) raw acoustic signal and (b) denoised signal. The MFCC-CNN trained on the denoised dataset 
shows faster convergence and higher testing accuracy. 

Fig. 14. Performance evaluation and benchmark for acoustic-based defect prediction in LDED. (a) The overall accuracy of the eight traditional ML models and 
MFCC-CNN model trained on the acoustic signal from different denoising steps. (b) AUC-ROC results of the eight ML models and MFCC-CNN model trained on the 
acoustic signal from different denoising steps. (c) False positive rate (i.e., percentage of actual defects misclassified as "defect-free" category). (d) Keyhole pore 
prediction accuracy. (Note: higher values for overall accuracy, AUC-ROC score, and keyhole prediction accuracy imply better performance; lower values for false 
positive rate indicate better performance.). 
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total predictions, as represented in the following expression: 

Accuracy =
#Correctlypredictedsamples

#Totalpredictions
(4) 

Fig. 14(a) illustrates the classification accuracy of the eight tradi-
tional ML models and the MFCC-CNN model trained on the acoustic 
signal from different denoising phases. In general, the accuracy im-
proves after each denoising step. The AUC-ROC score in Fig. 14(b) also 
demonstrates that, with a few exceptions, such as LR, SVM, and GB, the 
performance rises with each denoising step. Among all classifiers, the 
MFCC-CNN model trained on the denoised acoustic dataset had the 
highest overall prediction accuracy (89%) and the highest AUC-ROC 
score (98%), confirming the effectiveness of the proposed acoustic 
denoising technique. 

Figs. 15 and 16 show the ROC curves and confusion matrix for the 
different classifiers, respectively. The ROC curves of the MFCC-CNN 
trained on the denoised dataset outperformed the other models, exhib-
iting higher AUC values for all predicted classes. Furthermore, the 
confusion matrix of MFCC-CNN trained on denoised data demonstrates 
very high classification accuracy on the ‘defect-free’ class (91.4%) and 
the ‘keyhole pore’ class (92.8%). Although it does not predict cracks 
well, the misclassified crack sound is often wrongly labelled as ‘keyhole 
pore’, which has little effect on the practical application since both 
categories are defect sounds. 

In this research, the false positive rate (i.e., the proportion of actual 
defects misclassified as ‘defect-free’ category) is an essential perfor-
mance metric. Misclassifying actual defects (such as cracks and keyhole 
pores) as "defect-free" is detrimental since the system would assume the 
process could continue without interruption or correction. As a result, 
the false positive rate should be kept to a minimum. Misidentifying 
keyhole pores for cracks, on the other hand, has fewer negative conse-
quences because both are defects that must be corrected. Furthermore, 
false negative decisions (i.e., misclassifying a ’defect-free’ regime as 

defective) are also less harmful because they do not influence the part 
quality and only affect productivity (i.e., more time spent on process 
intermittence). Based on Fig. 14(c) and (d), the MFCC-CNN model 
trained on the denoised dataset has the lowest false positive rate (9%), 
and the best keyhole pore prediction accuracy (92.8%) among all the 
models. 

In addition, a 500 ms prediction window with an overall quality 
prediction accuracy of 89% was found to be appropriate for our specific 
application in LDED process. It is worth mentioning that the segmen-
tation length of 500 ms was chosen as a balance between the accuracy of 
the ML model and the spatiotemporal resolution of predictions. Gener-
ally, the accuracy of the ML model decreases as the length of acoustic 
signals shortens. Longer signals provide more information about the 
acoustic event, improving the ML model’s accuracy. Our choice of 
500 ms provides sufficient information for the ML model to make ac-
curate prediction, while still offering a relatively high spatiotemporal 
resolution. This trade-off was also reported in the study by Tempelman 
et al. [34]. With our in-house-developed software platform, the defect 
detection model collects 500 ms of audio samples and infers the pres-
ence of defects every 500 ms, publishing the results as a ROS topic. If a 
keyhole pore or crack is detected within this period, the process can be 
stopped immediately to prevent further deterioration. A shorter seg-
mentation length would result in a drop in accuracy, which is not 
desirable. 

5. Conclusion and future works 

This paper addressed two major challenges in in-situ acoustic-based 
defect detection for the LDED process: the presence of noise in the LDED 
laser-material interaction sound and the lack of an automated online 
defect detection pipeline with in-situ feature extraction and prediction. 
It is the first study using acoustic signal processing and deep learning for 
in-situ defect detection in the LDED process. The main contribution and 

Fig. 15. Receiver operating characteristic (ROC) curves for prediction of LDED sound by ‘Support Vector Machine’, ‘Gradient Boosting’, ‘Logistic Regression’, ‘K 
Nearest Neighbour’, and MFCC-CNN trained on the raw acoustic dataset and denoised dataset. The results shown for SVM, GB, LR, and KNN are trained using 
denoised acoustic dataset. 
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novelty of this work are summarized as follows:  

• An automated in-situ acoustic denoising, feature extraction and 
laser-material interaction sound classification pipeline to predict 
cracks and keyhole pores in the LDED process.  

• A convolutional neural network (CNN) based on Mel-frequency 
Cepstrum Coefficients (MFCCs) acoustic features to classify LDED 
sound and predict defects with high accuracy (89%).  

• Development of an acoustic signal denoising technique combining 
acoustic equalization, bandpass filtering, and HPSS algorithm that 
significantly improves the sound classification accuracy.  

• Investigation of key acoustic features corresponding to defect-free, 
cracks and keyhole pores in the time-domain (e.g., amplitude enve-
lope, RMS energy, etc), frequency-domain (spectral centroid, spec-
tral bandwidth, band energy ratio, etc.), and time-frequency 
representations (MFCCs). 

The proposed MFCC-CNN model surpassed all classic machine 
learning algorithms that have been tested in this work in terms of 
classification accuracy, AUC-ROC score, and false positive rate. 
Furthermore, the model evaluation result demonstrated that the 
denoised acoustic signal can improve the accuracy and reduce the false 
positive rate of the sound classification model over the raw acoustic 
signal. The proposed in-situ defect detection strategy based on acoustic 
signals and deep learning provides a cost-effective solution for LDED 
quality assurance by leveraging the flexible microphone setup and lower 
hardware cost compared to existing sensing methods. However, the 
timescale of acoustic-based in-situ defect detection in this study is 
limited (500 ms), which is significantly larger than the work provided in 

the LPBF process [34] (2.5 ms). On the one hand, the laser scanning 
speed in LDED is substantially slower than in LPBF. The formation of 
defects in LDED, on the other hand, is much more challenging to predict 
because of the noisy environment, making it necessary to have a suffi-
cient length of audio data for the ML model to make an accurate pre-
diction. Future studies will focus on shortening the defect detection 
period while preserving accuracy. The proposed acoustic-based defect 
detection framework will also be applied to other alloys and other types 
of defects such as lack-of-fusion (LoF) and delamination, each of which 
has a unique acoustic signature and defect formation mechanism. 
Furthermore, the proposed defect detection methods can also be used to 
detect interior defects after the build has been completed, eliminating 
the need for post-processing microscopy. This is enabled by the real-time 
retrieval of robot position data through ROS, which can be registered 
with the predicted quality labels to facilitate location-specific defect 
identification. Once the defective regions are identified, robotic 
machining can be applied to remove them. Therefore, the in-situ defect 
detection strategy sets the foundation for developing a self-adaptive 
hybrid processing strategy that is capable of enhancing part quality 
and streamlining the printing process. 

CRediT authorship contribution statement 

Lequn Chen: Visualization, Validation, Software, Methodology, 
Investigation, Formal analysis, Data curation, Conceptualization, 
Writing - original draft, Writing - review & editing. Xiling Yao: Writing 
– review & editing, Methodology, Funding acquisition, Conceptualiza-
tion. Chaolin Tan: Writing – review & editing, Investigation. Weiyang 
He: Writing – review & editing, Data curation. Jinlong Su: Writing – 

Fig. 16. Confusion matrix for the classification task for ‘Support Vector Machine’, ‘Gradient Boosting’, ‘Logistic Regression’, ‘K Nearest Neighbour’, and MFCC-CNN 
trained on the raw acoustic dataset and denoised dataset. The results shown for SVM, GB, LR, and KNN are trained using denoised acoustic dataset. 

L. Chen et al.                                                                                                                                                                                                                                    



Additive Manufacturing 69 (2023) 103547

16

review & editing, Data curation. Fei Weng: Writing – review & editing, 
Methodology. Youxiang Chew: Writing – review & editing, Supervi-
sion, Resources, Project administration. Nicholas Poh Huat Ng: 
Investigation, Data curation. Seung Ki Moon: Writing – review & 
editing, Supervision, Resources, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data Availability 

The data that has been used is confidential. 

Acknowledgments 

This research is funded by the Agency for Science, Technology and 
Research (A*STAR) of Singapore through the Career Development Fund 

(Grant No. C210812030). It is also supported by Singapore Centre for 3D 
Printing (SC3DP), the National Research Foundation, Prime Minister’s 
Office, Singapore under its Medium-Sized Centre funding scheme. 

Appendix A. Acoustic feature correlation matrix 

Fig. A1. 

References 

[1] C. Tan, F. Weng, S. Sui, Y. Chew, G. Bi, Progress and perspectives in laser additive 
manufacturing of key aeroengine materials, Int. J. Mach. Tools Manuf. 170 (2021), 
103804, https://doi.org/10.1016/j.ijmachtools.2021.103804. 

[2] J.M. Wilson, C. Piya, Y.C. Shin, F. Zhao, K. Ramani, Remanufacturing of turbine 
blades by laser direct deposition with its energy and environmental impact 
analysis, J. Clean. Prod. 80 (2014) 170–178, https://doi.org/10.1016/j. 
jclepro.2014.05.084. 

[3] A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, P. Fino, Application 
of directed energy deposition-based additive manufacturing in repair, Appl. Sci. 9 
(16) (2019), https://doi.org/10.3390/app9163316. 

[4] B.T. Gibson, et al., Controls and process planning strategies for 5-axis laser directed 
energy deposition of Ti-6Al-4V using an 8-axis industrial robot and rotary motion, 
Addit. Manuf. (2022), 103048, https://doi.org/10.1016/j.addma.2022.103048. 

Fig. A1. Heat map that show correlations amongst numerical acoustic features (time-domain and spectral descriptors) and the output class (i.e., 0 – defect free, 1 - 
cracks, 2 - keyhole pores). 

L. Chen et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.ijmachtools.2021.103804
https://doi.org/10.1016/j.jclepro.2014.05.084
https://doi.org/10.1016/j.jclepro.2014.05.084
https://doi.org/10.3390/app9163316
https://doi.org/10.1016/j.addma.2022.103048


Additive Manufacturing 69 (2023) 103547

17

[5] M. Schmidt, et al., Laser based additive manufacturing in industry and academia, 
CIRP Ann. 66 (2) (2017) 561–583, https://doi.org/10.1016/j.cirp.2017.05.011. 

[6] Z.Y. Chua, I.H. Ahn, S.K. Moon, Process monitoring and inspection systems in 
metal additive manufacturing: status and applications, Int. J. Precis. Eng. Manuf. 
-Green. Tech. 4 (2) (2017) 235–245, https://doi.org/10.1007/s40684-017-0029-7. 

[7] Z. Tang, et al., Investigation on coaxial visual characteristics of molten pool in 
laser-based directed energy deposition of AISI 316L steel, J. Mater. Process. 
Technol. vol. 290 (. 2021), 116996, https://doi.org/10.1016/j. 
jmatprotec.2020.116996. 

[8] L. Chen, X. Yao, P. Xu, S.K. Moon, G. Bi, Surface monitoring for additive 
manufacturing with in-situ point cloud processing, 2020 6th Int. Conf. Control, 
Autom. Robot. (ICCAR) (2020) 196–201, https://doi.org/10.1109/ 
ICCAR49639.2020.9108092. 

[9] L. Chen, X. Yao, N.P.H. Ng, S.K. Moon, In-situ melt pool monitoring of laser aided 
additive manufacturing using infrared thermal imaging, 2022 IEEE Int. Conf. Ind. 
Eng. Eng. Manag. (IEEM) (2022) 1478–1482, https://doi.org/10.1109/ 
IEEM55944.2022.9989715. 

[10] C. Gonzalez-Val, A. Pallas, V. Panadeiro, A. Rodriguez, A convolutional approach 
to quality monitoring for laser manufacturing, J. Intell. Manuf. 31 (3) (2020) 
789–795, https://doi.org/10.1007/s10845-019-01495-8. 

[11] M. Grasso, A.G. Demir, B. Previtali, B.M. Colosimo, In situ monitoring of selective 
laser melting of zinc powder via infrared imaging of the process plume, Robot. 
Comput. -Integr. Manuf. 49 (2018) 229–239, https://doi.org/10.1016/j. 
rcim.2017.07.001. 

[12] Z. Smoqi, et al., Closed-loop control of meltpool temperature in directed energy 
deposition, Mater. Des. 215 (2022), 110508, https://doi.org/10.1016/j. 
matdes.2022.110508. 

[13] H. Yeung, F.H. Kim, M.A. Donmez, J. Neira, Keyhole pores reduction in laser 
powder bed fusion additive manufacturing of nickel alloy 625, Int. J. Mach. Tools 
Manuf. 183 (2022), 103957, https://doi.org/10.1016/j.ijmachtools.2022.103957. 

[14] B.T. Gibson, et al., Melt pool size control through multiple closed-loop modalities 
in laser-wire directed energy deposition of Ti-6Al-4V, Addit. Manuf. 32 (2020), 
100993, https://doi.org/10.1016/j.addma.2019.100993. 

[15] L. Chen, X. Yao, Y. Chew, F. Weng, S.K. Moon, G. Bi, Data-driven adaptive control 
for laser-based additive manufacturing with automatic controller tuning, Appl. Sci. 
10 (22) (2020), https://doi.org/10.3390/app10227967. 

[16] W. Li, et al., Deep learning based online metallic surface defect detection method 
for wire and arc additive manufacturing, Robot. Comput. -Integr. Manuf. 80 
(2023), 102470, https://doi.org/10.1016/j.rcim.2022.102470. 

[17] L. Lu, J. Hou, S. Yuan, X. Yao, Y. Li, J. Zhu, Deep learning-assisted real-time defect 
detection and closed-loop adjustment for additive manufacturing of continuous 
fiber-reinforced polymer composites, Robot. Comput. -Integr. Manuf. 79 (2023), 
102431, https://doi.org/10.1016/j.rcim.2022.102431. 

[18] H.Z. Imam, H. Al-Musaibeli, Y. Zheng, P. Martinez, R. Ahmad, Vision-based spatial 
damage localization method for autonomous robotic laser cladding repair 
processes, Robot. Comput. - Integr. Manuf. 80 (2023), 102452, https://doi.org/ 
10.1016/j.rcim.2022.102452. 

[19] Z. Li, Z. Zhang, J. Shi, D. Wu, Prediction of surface roughness in extrusion-based 
additive manufacturing with machine learning, Robot. Comput. -Integr. Manuf. 57 
(2019) 488–495, https://doi.org/10.1016/j.rcim.2019.01.004. 

[20] J. Xiong, Y. Pi, H. Chen, Deposition height detection and feature point extraction in 
robotic GTA-based additive manufacturing using passive vision sensing, Robot. 
Comput. - Integr. Manuf. 59 (2019) 326–334, https://doi.org/10.1016/j. 
rcim.2019.05.006. 

[21] C. Xia, Z. Pan, J. Polden, H. Li, Y. Xu, S. Chen, Modelling and prediction of surface 
roughness in wire arc additive manufacturing using machine learning, J. Intell. 
Manuf. (2021) 1–16, https://doi.org/10.1007/s10845-020-01725-4. 

[22] C. Liu, et al., Toward online layer-wise surface morphology measurement in 
additive manufacturing using a deep learning-based approach, J. Intell. Manuf. 
(2022) 1–17, https://doi.org/10.1007/s10845-022-01933-0. 

[23] M. Perani, S. Baraldo, M. Decker, A. Vandone, A. Valente, B. Paoli, Track geometry 
prediction for Laser Metal Deposition based on on-line artificial vision and deep 
neural networks, Robot. Comput. - Integr. Manuf. 79 (2023), 102445, https://doi. 
org/10.1016/j.rcim.2022.102445. 

[24] L. Chen, X. Yao, P. Xu, S.K. Moon, G. Bi, Rapid surface defect identification for 
additive manufacturing with in-situ point cloud processing and machine learning, 
Virtual Phys. Prototyp. 16 (1) (2020) 50–67, https://doi.org/10.1080/ 
17452759.2020.1832695. 

[25] P. Xu, et al., In-process adaptive dimension correction strategy for laser aided 
additive manufacturing using laser line scanning, J. Mater. Process. Technol. 303 
(2022), 117544, https://doi.org/10.1016/j.jmatprotec.2022.117544. 

[26] M. Li, Z. Du, X. Ma, W. Dong, Y. Gao, A robot hand-eye calibration method of line 
laser sensor based on 3D reconstruction, Robot. Comput. - Integr. Manuf. 71 
(2021), 102136, https://doi.org/10.1016/j.rcim.2021.102136. 

[27] Y.S. Touloukian and D.P. DeWitt, Thermophysical Properties of Matter - The TPRC 
Data Series. Volume 7. Thermal Radiative Properties - Metallic Elements and 
Alloys, Thermophysical and electronic properties information analysis center 
lafayette in, Jan. 1970. Accessed: May 26, 2022. [Online]. Available: https://apps. 
dtic.mil/sti/citations/ADA951941. 

[28] J.C. Heigel, B.M. Lane, Measurement of the melt pool length during single scan 
tracks in a commercial laser powder bed fusion process, J. Manuf. Sci. Eng. 140 (5) 
(2018), https://doi.org/10.1115/1.4037571. 

[29] V. Pandiyan, R. Drissi-Daoudi, S. Shevchik, G. Masinelli, R. Logé, K. Wasmer, 
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